Open Access

Herbal Bioactive Compounds for Skin Infections and Inflammatory Conditions


Cite

Aryee A, Edgeworth JD. Carriage, clinical microbiology and transmission of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:1-19. https://doi.org/10.1007/82_2016_5 PMid:27097812Search in Google Scholar

van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, et al. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis. 2009;199(12):1820-6. https://doi.org/10.1086/599119 PMid:19419332Search in Google Scholar

Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751-62. https://doi.org/10.1016/S1473-3099(05)70295-4 PMid:16310147Search in Google Scholar

Licitra G. Etymologia: Staphylococcus. Emerg Infect Dis. 2013;19:1553. https://doi.org/10.3201/eid1909.ET1909Search in Google Scholar

Fitzgerald JR. Evolution of Staphylococcus aureus during human colonization and infection. Infect Genet Evol. 2014;21:542-7. https://doi.org/10.1016/j.meegid.2013.04.020 PMid:23624187Search in Google Scholar

Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:21-56. https://doi.org/10.1007/82_2016_3 PMid:27025380Search in Google Scholar

Frank AL, Marcinak JF, Mangat PD, Schreckenberger PC. Community-acquired and clindamycin-susceptible methicillin-resistant Staphylococcus aureus in children. Pediatr Infect Dis J. 1999;18(11):993-1000. https://doi.org/10.1097/00006454-199911000-00012 PMid:10571437Search in Google Scholar

Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, et al. Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA. 1998;279(8):593-598. https://doi.org/10.1001/jama.279.8.593 PMid:9486753Search in Google Scholar

Groom AV, Wolsey DH, Naimi TS, Smith K, Johnson S, Boxrud D, et al. Community-acquired methicillin-resistant Staphylococcus aureus in a rural American Indian community. JAMA. 2001;286(10):1201-5. https://doi.org/10.1001/jama.286.10.1201 PMid:11559265Search in Google Scholar

Pallin DJ, Egan DJ, Pelletier AJ, Espinola JA, Hooper DC, Camargo CA Jr. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med. 2008;51(3):291-8. https://doi.org/10.1016/j.annemergmed.2007.12.004 PMid:18222564Search in Google Scholar

From the centers for disease control and prevention. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus --Minnesota and North Dakota, 1997-1999. JAMA. 1999;282(12):1123-5. PMid:21033181Search in Google Scholar

King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. Ann Intern Med. 2006;144(5):309-17. https://doi.org/10.7326/0003-4819-144-5-200603070-00005 PMid:16520471Search in Google Scholar

Hayward A, Knott F, Petersen I, Livermore DM, Duckworth G, Islam A, et al. Increasing hospitalizations and general practice prescriptions for community-onset staphylococcal disease, England. Emerg Infect Dis. 2008;14(5):720-6. https://doi.org/10.3201/eid1405.070153 PMid:18439352Search in Google Scholar

Vaska VL, Nimmo GR, Jones M, Grimwood K, Paterson DL. Increases in Australian cutaneous abscess hospitalisations: 1999-2008. Eur J Clin Microbiol Infect Dis. 2012;31(1):93-6. https://doi.org/10.1007/s10096-011-1281-3 PMid:21553298Search in Google Scholar

Schaumburg F, Alabi AS, Peters G, Becker K. New epidemiology of Staphylococcus aureus infection in Africa. Clin Microbiol Infect. 2014;20(7):589-96. https://doi.org/10.1111/1469-0691.12690 PMid:24861767Search in Google Scholar

Jurke A, Daniels-Haardt I, Silvis W, Berends MS, Glasner C, Becker K, et al. Changing epidemiology of meticillin-resistant Staphylococcus aureus in 42 hospitals in the Dutch-German border region, 2012 to 2016: Results of the search-and-follow-policy. Euro Surveill. 2019;24(15):1800244. https://doi.org/10.2807/1560-7917.ES.2019.24.15.1800244 PMid:30994105Search in Google Scholar

Huh K, Chung DR. Changing epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the Asia-Pacific region. Expert Rev Anti Infect Ther. 2016;14(11):1007-22. https://doi.org/10.1080/14787210.2016.1236684 PMid:27645549Search in Google Scholar

Klein EY, Jiang W, Mojica N, Tseng KK, McNeill R, Cosgrove SE, et al. National costs associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010-2014. Clin Infect Dis. 2019;68(1):22-8. https://doi.org/10.1093/cid/ciy399 PMid:29762662Search in Google Scholar

Fauci AS. The global challenge of infectious diseases: The evolving role of the National Institutes of Health in basic and clinical research. Nat Immunol. 2005;6(8):743-7. https://doi.org/10.1038/ni0805-743 PMid:16034426Search in Google Scholar

Stevens DL, Bisno AL, Chambers HF, Everett ED, Dellinger P, Goldstein EJ, et al. Practice guidelines for the diagnosis and management of skin and soft-tissue infections. Clin Infect Dis. 2005;41(10):1373-406. https://doi.org/10.1086/497143 PMid:16231249Search in Google Scholar

Stevens DL, Bisno AL, Chambers HF, Dellinger EP, Goldstein EJ, Gorbach SL, et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis. 2014;59(2):e10-52. https://doi.org/10.1093/cid/ciu444 PMid:24973422Search in Google Scholar

Wang F, Zhou H, Olademehin OP, Kim SJ, Tao P. Insights into key interactions between vancomycin and bacterial cell wall structures. ACS Omega. 2018;3(1):37-45. https://doi.org/10.1021/acsomega.7b01483 PMid:29399648Search in Google Scholar

Tang J, Hu J, Kang L, Deng Z, Wu J, Pan J. The use of vancomycin 28 https://oamjms.eu/index.php/mjms/index in the treatment of adult patients with methicillin-resistant Staphylococcus aureus (MRSA) infection: A survey in a tertiary hospital in China. Int J Clin Exp Med. 2015;8(10):19436-41.Search in Google Scholar

Chien JW, Kucia ML, Salata RA. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Clin Infect Dis. 2000;30(1):146-51. https://doi.org/10.1086/313597 PMid:10619743Search in Google Scholar

Hashemian SM, Farhadi T, Ganjparvar M. Linezolid: A review of its properties, function, and use in critical care. Drug Des Devel Ther. 2018;12:1759-67. https://doi.org/10.2147/DDDT.S164515 PMid:29950810Search in Google Scholar

Yue J, Dong BR, Yang M, Chen X, Wu T, Liu GJ. Linezolid versus vancomycin for skin and soft tissue infections. Cochrane Database Syst Rev. 2016;2016:CD008056. https://doi.org/10.1002/14651858.CD008056.pub3 PMid:26758498Search in Google Scholar

Li Y, Xu W. Efficacy and safety of linezolid compared with other treatments for skin and soft tissue infections: A meta-analysis. Biosci Rep. 2018;38(1):BSR20171125. https://doi.org/10.1042/BSR20171125 PMid:29229674Search in Google Scholar

Watkins RR, Lemonovich TL, File TM Jr. An evidence-based review of linezolid for the treatment of methicillin-resistant Staphylococcus aureus (MRSA): Place in therapy. Core Evid. 2012;7:131-43. https://doi.org/10.2147/CE.S33430 PMid:23271985Search in Google Scholar

Spížek J, Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem Pharmacol. 2017;133:20-8. https://doi.org/10.1016/j.bcp.2016.12.001 PMid:27940264Search in Google Scholar

Frei CR, Miller ML, Lewis JS 2nd, Lawson KA, Hunter JM, Oramasionwu CU, et al. Trimethoprim-sulfamethoxazole or clindamycin for community-associated MRSA (CA-MRSA) skin infections. J Am Board Fam Med. 2010;23(6):714-9. https://doi.org/10.3122/jabfm.2010.06.090270 PMid:21057066Search in Google Scholar

Sakoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr., Eliopoulos GM. Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol. 2004;42(6):2398-402. https://doi.org/10.1128/JCM.42.6.2398-2402.2004 PMid:15184410Search in Google Scholar

Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A. Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. Sci Rep. 2016;6:38184. https://doi.org/10.1038/srep38184 PMid:27901075Search in Google Scholar

Miller WR, Bayer AS, Arias CA. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med. 2016;6(11):a026997. https://doi.org/10.1101/cshperspect.a026997 PMid:27580748Search in Google Scholar

Taylor SD, Palmer M. The action mechanism of daptomycin. Bioorg Med Chem. 2016;24(24):6253-68. https://doi.org/10.1016/j.bmc.2016.05.052 PMid:27288182Search in Google Scholar

Martone WJ, Lamp KC. Efficacy of daptomycin in complicated skin and skin-structure infections due to methicillin-sensitive and -resistant Staphylococcus aureus: Results from the CORE Registry. Curr Med Res Opin. 2006;22(12):2337-43. https://doi.org/10.1185/030079906X148427 PMid:17257448Search in Google Scholar

Bradley J, Glasser C, Patino H, Arnold SR, Arrieta A, Congeni B, et al. Daptomycin for complicated skin infections: A randomized trial. Pediatrics. 2017;139(3):e20162477. https://doi.org/10.1542/peds.2016-2477 PMid:28202770Search in Google Scholar

Davis SL, McKinnon PS, Hall LM, Delgado G Jr., Rose W, Wilson RF, et al. Daptomycin versus vancomycin for complicated skin and skin structure infections: Clinical and economic outcomes. Pharmacotherapy. 2007;27:1611-8. https://doi.org/10.1592/phco.27.12.1611 PMid:18041881Search in Google Scholar

Shoemaker DM, Simou J, Roland WE. A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag. 2006;2(2):169-74. https://doi.org/10.2147/tcrm.2006.2.2.169 PMid:18360590Search in Google Scholar

Bland CM, Bookstaver PB, Lu ZK, Dunn BL, Rumley KF, Southeastern Research Group E. Musculoskeletal safety outcomes of patients receiving daptomycin with HMGCoA reductase inhibitors. Antimicrob Agents Chemother. 2014;58(10):5726-31. https://doi.org/10.1128/AAC.02910-14 PMid:25022580Search in Google Scholar

van Bambeke F, Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 137 - Mechanisms of action. In: Cohen J, Powderly WG, Opal SM, editors. Infectious Diseases. 4th ed. Netherlands: Elsevier; 2017. p. 1162-80.e1.Search in Google Scholar

Shirley DA, Heil EL, Johnson JK. Ceftaroline fosamil: A brief clinical review. Infect Dis Ther. 2013;2(2):95-110. https://doi.org/10.1007/s40121-013-0010-x PMid:25134474Search in Google Scholar

Abbott IJ, Jenney AW, Jeremiah CJ, Mirčeta M, Kandiah JP, Holt DC, et al. Reduced in vitro activity of ceftaroline by etest among clonal complex 239 methicillin-resistant Staphylococcus aureus clinical strains from Australia. Antimicrob Agents Chemother. 2015;59(12):7837-41. https://doi.org/10.1128/AAC.02015-15 PMid:26392488Search in Google Scholar

Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D, Baculik T, et al. CANVAS 2: The second Phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother. 2010;65 Suppl 4:v53-65. https://doi.org/10.1093/jac/dkq255 PMid:21115455Search in Google Scholar

Dryden M, Zhang Y, Wilson D, Iaconis JP, Gonzalez J. A Phase III, randomized, controlled, non-inferiority trial of ceftaroline fosamil 600 mg every 8 h versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother. 2016;71(12):3575-84. https://doi.org/10.1093/jac/dkw333 PMid:27585969Search in Google Scholar

Cosimi RA, Beik N, Kubiak DW, Johnson JA. Ceftaroline for severe methicillin-resistant Staphylococcus aureus infections: A systematic review. Open Forum Infect Dis. 2017;4(2):ofx084. https://doi.org/10.1093/ofid/ofx084 PMid:28702467Search in Google Scholar

Kamath RS, Sudhakar D, Gardner JG, Hemmige V, Safar H, Musher DM. Guidelines vs actual management of skin and soft tissue infections in the emergency department. Open Forum Infect Dis. 2018;5(1):ofx188. https://doi.org/10.1093/ofid/ofx188 PMid:29354655Search in Google Scholar

Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010;300(2-3):98-103. https://doi.org/10.1016/j.ijmm.2009.08.013 PMid:19811948Search in Google Scholar

Olsen JE, Christensen H, Aarestrup FM. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother. 2006;57(3):450-60. https://doi.org/10.1093/jac/dki492 PMid:16449305Search in Google Scholar

Ploy MC, Grélaud C, Martin C, de Lumley L, Denis F. First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. Lancet. 1998;351(9110):1212. https://doi.org/10.1016/s0140-6736(05)79166-2 PMid:9643727Search in Google Scholar

Centers for Disease Control and Prevention (CDC). Staphylococcus aureus resistant to vancomycin--United States, 2002. MMWR Morb Mortal Wkly Rep. 2002;51(26):565-7.Search in Google Scholar

Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: Resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99-139. https://doi.org/10.1128/CMR.00042-09 PMid:20065327Search in Google Scholar

McGuinness WA, Malachowa N, DeLeo FR. Vancomycin resistance in Staphylococcus aureus. Yale J Biol Med. 2017;90(2):269-81.Search in Google Scholar

Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124(7):2836-40. https://doi.org/10.1172/JCI68834 PMid:24983424Search in Google Scholar

Ślusarczyk R, Bielejewska A, Bociek A, Bociek M. Resistance to ceftaroline-2018 review. Eur J Biol Res. 2018;8:112-20.Search in Google Scholar

Kelley WL, Jousselin A, Barras C, Lelong E, Renzoni A. Missense mutations in PBP2A affecting ceftaroline susceptibility detected in epidemic hospital-acquired methicillin-resistant Staphylococcus aureus clonotypes ST228 and ST247 in Western Switzerland archived since 1998. Antimicrob Agents Chemother. 2015;59(4):1922-30. https://doi.org/10.1128/AAC.04068-14 PMid:25583724Search in Google Scholar

Lahiri SD, Alm RA. Identification of non-PBP2a resistance mechanisms in Staphylococcus aureus after serial passage with ceftaroline: Involvement of other PBPs. J Antimicrob Chemother. 2016;71(11):3050-7. http://doi.org/10.1093/jac/dkw282 PMid:27494915Search in Google Scholar

Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, Chiu CY. Whole-genome sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential non-mecA mechanisms of resistance. PLoS One. 2016;11(2):e0149541. https://doi.org/10.1371/journal.pone.0149541 PMid:26890675Search in Google Scholar

Rajan V, Kumar VG, Gopal S. A cfr-positive clinical staphylococcal isolate from India with multiple mechanisms of linezolid-resistance. Indian J Med Res. 2014;139(3):463-7.Search in Google Scholar

Mittal G, Bhandari V, Gaind R, Rani V, Chopra S, Dawar R, et al. Linezolid resistant coagulase negative staphylococci (LRCoNS) with novel mutations causing blood stream infections (BSI) in India. BMC Infect Dis. 2019;19(1):717. https://doi.org/10.1186/s12879-019-4368-6 PMid:31412801Search in Google Scholar

Miller K, Dunsmore CJ, Fishwick CW, Chopra I. Linezolid and tiamulin cross-resistance in Staphylococcus aureus mediated by point mutations in the peptidyl transferase center. Antimicrob Agents Chemother. 2008;52(5):1737-42. https://doi.org/10.1128/AAC.01015-07 PMid:18180348Search in Google Scholar

Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13(1):42-51. https://doi.org/10.1038/nrmicro3380 PMid:25435309Search in Google Scholar

Adhikari RP, Shrestha S, Barakoti A, Amatya R. Inducible clindamycin and methicillin resistant Staphylococcus aureus in a tertiary care hospital, Kathmandu, Nepal. BMC Infect Dis. 2017;17(1):483. https://doi.org/10.1186/s12879-017-2584-5 PMid:28693489Search in Google Scholar

Ernst CM, Slavetinsky CJ, Kuhn S, Hauser JN, Nega M, Mishra NN, et al. Gain-of-function mutations in the phospholipid flippase MprF confer specific daptomycin resistance. MBio. 2018;9(6):e01659-18. https://doi.org/10.1128/mBio.01659-18 PMid:30563904Search in Google Scholar

Reichmann NT, Cassona CP, Gründling A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology (Reading). 2013;159(Pt 9):1868-77. https://doi.org/10.1099/mic.0.069898-0 PMid:23858088Search in Google Scholar

Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34(2):261-80. https://doi.org/10.1007/s00281-011-0292-6 PMid:22057887Search in Google Scholar

Kobayashi SD, Malachowa N, DeLeo FR. Pathogenesis of Staphylococcus aureus abscesses. Am J Pathol. 2015;185(6):1518-27. https://doi.org/10.1016/j.ajpath.2014.11.030 PMid:25749135Search in Google Scholar

Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13(3):159-75. https://doi.org/10.1038/nri3399 PMid:23435331Search in Google Scholar

Miller LS, Cho JS. Immunity against Staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505-18. https://doi.org/10.1038/nri3010 PMid:21720387Search in Google Scholar

Panton P, Valentine F. Staphylococcal toxin. Lancet. 1932;219(5662):506-8.Search in Google Scholar

Costello ME, Huygens F. Diversity of community acquired MRSA carrying the PVL gene in Queensland and New South Wales, Australia. Eur J Clin Microbiol Infect Dis. 2011;30(10):1163-7. https://doi.org/10.1007/s10096-011-1203-4 PMid:21424382Search in Google Scholar

Harch SA, MacMorran E, Tong SY, Holt DC, Wilson J, Athan E, et al. High burden of complicated skin and soft tissue infections in the Indigenous population of Central Australia due to dominant Panton Valentine leucocidin clones ST93-MRSA and CC121-MSSA. BMC Infect Dis. 2017;17(1):405. https://doi.org/10.1186/s12879-017-2460-3 PMid:28592231Search in Google Scholar

Hu Q, Cheng H, Yuan W, Zeng F, Shang W, Tang D, et al. Panton-Valentine leukocidin (PVL)-positive health care-associated methicillin-resistant Staphylococcus aureus isolates are associated with skin and soft tissue infections and colonized mainly by infective PVL-encoding bacteriophages. J Clin Microbiol. 2015;53(1):67-72. https://doi.org/10.1128/JCM.01722-14 PMid:25339405Search in Google Scholar

Immergluck LC, Jain S, Ray SM, Mayberry R, Satola S, Parker TC, et al. Risk of skin and soft tissue infections among children found to be Staphylococcus aureus MRSA USA300 carriers. West J Emerg Med. 2017;18(2):201-212. https://doi.org/10.5811/westjem.2016.10.30483 PMid:28210352Search in Google Scholar

Ma J, Gulbins E, Edwards MJ, Caldwell CC, Fraunholz M, Becker KA. Staphylococcus aureus α-toxin induces inflammatory cytokines via lysosomal acid sphingomyelinase and ceramides. Cell Physiol Biochem. 2017;43(6):2170-84. https://doi.org/10.1159/000484296 PMid:29069651Search in Google Scholar

Montgomery CP, Boyle-Vavra S, Daum RS. Importance of the global regulators Agr and SaeRS in the pathogenesis of CA-MRSA USA300 infection. PLoS One. 2010;5(12):e15177. https://doi.org/10.1371/journal.pone.0015177 PMid:21151999Search in Google Scholar

Weiss EC, Zielinska A, Beenken KE, Spencer HJ, Daily SJ, Smeltzer MS. Impact of sarA on daptomycin susceptibility of Staphylococcus aureus biofilms in vivo. Antimicrob Agents Chemother. 2009;53(10):4096-102. https://doi.org/10.1128/AAC.00484-09 PMid:19651914Search in Google Scholar

Chen Y, Yeh AJ, Cheung GY, Villaruz AE, Tan VY, Joo HS, et al. Basis of virulence in a Panton-Valentine leukocidin-negative community-associated methicillin-resistant Staphylococcus aureus strain. J Infect Dis. 2015;211(3):472-80. https://doi.org/10.1093/infdis/jiu462 PMid:25139021Search in Google Scholar

Hilliard JJ, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones-Nelson O, et al. Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model. Antimicrob Agents Chemother. 2015;59:299-309. https://doi.org/10.1128/AAC.03918-14 PMid:25348518Search in Google Scholar

Le VT, Tkaczyk C, Chau S, Rao RL, Dip EC, Pereira-Franchi EP, et al. Critical role of alpha-toxin and protective effects of its neutralization by a human antibody in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2016;60(10):5640-8. https://doi.org/10.1128/AAC.00710-16 PMid:27401576Search in Google Scholar

Surewaard BG, de Haas CJ, Vervoort F, Rigby KM, DeLeo FR, Otto M, et al. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol. 2013;15(8):1427-37. https://doi.org/10.1111/cmi.12130 PMid:23470014Search in Google Scholar

Berlon NR, Qi R, Sharma-Kuinkel BK, Joo HS, Park LP, George D, et al. Clinical MRSA isolates from skin and soft tissue infections show increased in vitro production of phenol soluble modulins. J Infect. 2015;71:447-57. https://doi.org/10.1016/j.jinf.2015.06.005 PMid:26079275Search in Google Scholar

Richardson JR, Armbruster NS, Günter M, Biljecki M, Klenk J, Heumos S, et al. PSM peptides from community-associated methicillin-resistant Staphylococcus aureus impair the adaptive immune response via modulation of dendritic cell subsets in vivo. Front Immunol. 2019;10:995-5. https://doi.org/10.3389/fimmu.2019.00995 PMid:31134074Search in Google Scholar

Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med. 2007;13(12):1510-4. https://doi.org/10.1038/nm1656 PMid:17994102Search in Google Scholar

Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, et al. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog. 2009;5:e1000533. https://doi.org/10.1371/journal.ppat.1000533Search in Google Scholar

Nakaminami H, Ito T, Han X, Ito A, Matsuo M, Uehara Y, et al. First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. FEMS Microbiol Lett. 2017;364(16):fnx171. https://doi.org/10.1093/femsle/fnx171 PMid:28873947Search in Google Scholar

Viela F, Prystopiuk V, Leprince A, Mahillon J, Speziale P, Pietrocola G, et al. Binding of Staphylococcus aureus protein A to von willebrand factor is regulated by mechanical force. mBio. 2019;10(2):e00555-19. https://doi.org/10.1128/mBio.00555-19 PMid:31040240Search in Google Scholar

Malachowa N, Kobayashi SD, Porter AR, Braughton KR, Scott DP, Gardner DJ, et al. Contribution of Staphylococcus aureus coagulases and clumping factor A to abscess formation in a rabbit model of skin and soft tissue infection. PLoS One. 2016;11(6):e0158293. https://doi.org/10.1371/journal.pone.0158293 PMid:27336691Search in Google Scholar

Lacey KA, Mulcahy ME, Towell AM, Geoghegan JA, McLoughlin RM. Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathog. 2019;15(4):e1007713. https://doi.org/10.1371/journal.ppat.1007713 PMid:31009507Search in Google Scholar

Kwiecinski J, Jin T, Josefsson E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS. 2014;122(12):1240-50. https://doi.org/10.1111/apm.12295 PMid:25051890Search in Google Scholar

Edwards AM, Potter U, Meenan NA, Potts JR, Massey RC. Staphylococcus aureus keratinocyte invasion is dependent upon multiple high-affinity fibronectin-binding repeats within FnBPA. PLoS One. 2011;6(4):e18899. https://doi.org/10.1371/journal.pone.0018899 PMid:21526122Search in Google Scholar

Le KY, Otto M. Quorum-sensing regulation in staphylococci-an overview. Front Microbiol. 2015;6:1174. https://doi.org/10.3389/fmicb.2015.01174 PMid:26579084Search in Google Scholar

Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, et al. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 2014;10(6):e1004174. https://doi.org/10.1371/journal.ppat.1004174 PMid:24945495Search in Google Scholar

Cheung GY, Wang R, Khan BA, Sturdevant DE, Otto M. Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infect Immun. 2011;79(5):1927-35. https://doi.org/10.1128/IAI.00046-11 PMid:21402769Search in Google Scholar

Mohammed YHE, Manukumar HM, Rakesh KP, Karthik CS, Mallu P, Qin HL. Vision for medicine: Staphylococcus aureus biofilm war and unlocking key’s for anti-biofilm drug development. Microb Pathog. 2018;123:339-47. https://doi.org/10.1016/j.micpath.2018.07.002 PMid:30057355Search in Google Scholar

Craft KM, Nguyen JM, Berg LJ, Townsend SD. Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Medchemcomm. 2019;10(8):1231-41. https://doi.org/10.1039/c9md00044e PMid:31534648Search in Google Scholar

Singhai M, Malik A, Shahid M, Malik MA, Goyal R. A study on device-related infections with special reference to biofilm production and antibiotic resistance. J Glob Infect Dis. 2012;4(4):193-198. https://doi.org/10.4103/0974-777X.103896 PMid:23326076Search in Google Scholar

Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;4(12):e01067. https://doi.org/10.1016/j.heliyon.2018.e01067 PMid:30619958Search in Google Scholar

Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. https://doi.org/10.1128/MMBR.00013-14 PMid:25184564Search in Google Scholar

Mirani ZA, Aziz M, Khan SI. Small colony variants have a major role in stability and persistence of Staphylococcus aureus biofilms. J Antibiot (Tokyo). 2015;68(2):98-105. https://doi.org/10.1038/ja.2014.115 PMid:25160508Search in Google Scholar

Kim W, Hendricks GL, Tori K, Fuchs BB, Mylonakis E. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem. 2018;10(7):779-94. https://doi.org/10.4155/fmc-2017-0199 PMid:29569952Search in Google Scholar

Alav I, Sutton JM, Rahman KM. Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother. 2018;73(8):2003-20. https://doi.org/10.1093/jac/dky042 PMid:29506149Search in Google Scholar

Barsoumian AE, Mende K, Sanchez CJ Jr., Beckius ML, Wenke JC, Murray CK, et al. Clinical infectious outcomes associated with biofilm-related bacterial infections: A retrospective chart review. BMC Infect Dis. 2015;15:223. https://doi.org/10.1186/s12879-015-0972-2 PMid:26049931Search in Google Scholar

Romanò CL, Trentinaglia MT, De Vecchi E, Logoluso N, George DA, Morelli I, et al. Cost-benefit analysis of antibiofilm microbiological techniques for peri-prosthetic joint infection diagnosis. BMC Infect Dis. 2018;18(1):154. https://doi.org/10.1186/s12879-018-3050-8 PMid:29609540Search in Google Scholar

Edmiston CE, McBain AJ, Kiernan M, Leaper DJ. A narrative review of microbial biofilm in postoperative surgical site infections: Clinical presentation and treatment. J Wound Care. 2016;25(12):693-702. https://doi.org/10.12968/jowc.2016.25.12.693 PMID: 27974013Search in Google Scholar

Kwiecinski J, Kahlmeter G, Jin T. Biofilm formation by Staphylococcus aureus isolates from skin and soft tissue infections. Curr Microbiol. 2015;70(5):698-703. https://doi.org/10.1007/s00284-014-0770-x PMid:25586078Search in Google Scholar

Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J. Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: Role of fibrinogen and fibrin. J Dermatol Sci. 1997;16(1):2-10. https://doi.org/10.1016/s0923-1811(97)00611-7 PMid:9438901Search in Google Scholar

Shin K, Yun Y, Yi S, Lee HG, Cho JC, Suh KD, et al. Biofilm-forming ability of Staphylococcus aureus strains isolated from human skin. J Dermatol Sci. 2013;71(2):130-7. https://doi.org/10.1016/j.jdermsci.2013.04.004 PMid:23664186Search in Google Scholar

Kwiecinski JM, Jacobsson G, Horswill AR, Josefsson E, Jin T. Biofilm formation by Staphylococcus aureus clinical isolates correlates with the infection type. Infect Dis (Lond). 2019;51(6):446-51. https://doi.org/10.1080/23744235.2019.1593499 PMid:30985241Search in Google Scholar

Esposito S, Bassetti M, Borre S, Bouza E, Dryden M, Fantoni M, et al. Diagnosis and management of skin and soft-tissue infections (SSTI): A literature review and consensus statement on behalf of the Italian Society of Infectious Diseases and International Society of Chemotherapy. J Chemother. 2011;23(5):251-262. https://doi.org/10.1179/joc.2011.23.5.251 PMid:22005055Search in Google Scholar

Kobayashi T, Naik S, Nagao K. Choreographing immunity in the skin epithelial barrier. Immunity. 2019;50(3):552-65. https://doi.org/10.1016/j.immuni.2019.02.023 PMid:30893586Search in Google Scholar

Matejuk A. Skin immunity. Arch Immunol Ther Exp (Warsz). 2018;66(1):45-54. https://doi.org/10.1007/s00005-017-0477-3 PMid:28623375Search in Google Scholar

Ibrahim F, Khan T, Pujalte GG. Bacterial skin infections. Prim Care. 2015;42(4):485-99. https://doi.org/10.1016/j.pop.2015.08.001 PMid:26612370Search in Google Scholar

Sun L, Liu W, Zhang LJ. The role of toll-like receptors in skin host defense, psoriasis, and atopic dermatitis. J Immunol Res. 2019;2019:1824624. https://doi.org/10.1155/2019/1824624 PMid:31815151Search in Google Scholar

Bitschar K, Wolz C, Krismer B, Peschel A, Schittek B. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. J Dermatol Sci. 2017;87(3):215-20. https://doi.org/10.1016/j.jdermsci.2017.06.003 PMid:28655473Search in Google Scholar

Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14(5):289-301. https://doi.org/10.1038/nri3646 PMid:24722477Search in Google Scholar

Brandt SL, Putnam NE, Cassat JE, Serezani CH. Innate immunity to Staphylococcus aureus: Evolving paradigms in soft tissue and invasive infections. J Immunol. 2018;200(12):3871-80. https://doi.org/10.4049/jimmunol.1701574 PMid:29866769Search in Google Scholar

Kashem SW, Haniffa M, Kaplan DH. Antigen-presenting cells in the skin. Annu Rev Immunol. 2017;35:469-99. https://doi.org/10.1146/annurev-immunol-051116-052215 PMid:28226228Search in Google Scholar

Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41(2):139-57. https://doi.org/10.1093/femsre/fuw042 PMid:27965320Search in Google Scholar

Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis. 2016;74(6):ftw060. https://doi.org/10.1093/femspd/ftw060 PMid:27354296Search in Google Scholar

Battistelli M, Malatesta M, Meschini S. Oxidative stress to promote cell death or survival. Oxid Med Cell Longev. 2016;2016:2054650. https://doi:10.1155/2016/2054650 PMid:26941887Search in Google Scholar

Chakraborty SP, Roy S. In vitro Staphylococcus aureus -induced oxidative stress in mice murine peritoneal macrophages: A duration-dependent approach. Asian Pac J Trop Biomed. 2014;4(Suppl 1):S298-304. https://doi.org/10.12980/APJTB.4.2014B341 PMid:25183101Search in Google Scholar

Affonso RC, Voytena AP, Fanan S, Pitz H, Coelho DS, Horstmann AL, et al. Phytochemical composition, antioxidant activity, and the effect of the aqueous extract of coffee (Coffea arabica L.) bean residual press cake on the skin wound healing. Oxid Med Cell Longev. 2016;2016:1923754. https://doi.org/10.1155/2016/1923754 PMid:27965732Search in Google Scholar

Li C, Li H, Jiang Z, Zhang T, Wang Y, Li Z, et al. Interleukin-33 increases antibacterial defense by activation of inducible nitric oxide synthase in skin. PLoS Pathog. 2014;10(2):e1003918. https://doi.org/10.1371/journal.ppat.1003918 PMid:24586149Search in Google Scholar

Grosser MR, Weiss A, Shaw LN, Richardson AR. Regulatory requirements for Staphylococcus aureus nitric oxide resistance. J Bacteriol. 2016;198(15):2043-55. https://doi.org/10.1128/JB.00229-16 PMid:27185828Search in Google Scholar

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 2017;58(1-2):81-94. https://doi.org/10.1159/000454919 PMid:27974711Search in Google Scholar

George L, Bavya MC, Rohan KV, Srivastava R. A therapeutic polyelectrolyte-vitamin C nanoparticulate system in polyvinyl alcohol-alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces. 2017;160:315-24. https://doi.org/10.1016/j.colsurfb.2017.09.030 PMid:28950196Search in Google Scholar

Su X, Liu X, Wang S, Li B, Pan T, Liu D, et al. Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns. 2017;43(4):830-8. https://doi.org/10.1016/j.burns.2016.10.010 PMid:28040363Search in Google Scholar

Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, et al. Staphylococcus aureus biofilm infection compromises wound healing by causing deficiencies in granulation tissue collagen. Ann Surg. 2019;271(6):1174-85. https://doi.org/10.1097/SLA.0000000000003053 PMid:30614873Search in Google Scholar

Lone AG, Atci E, Renslow R, Beyenal H, Noh S, Fransson B, et al. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect Immun. 2015;83(6):2531-41. https://doi.org/10.1128/IAI.03075-14 PMid:25847960Search in Google Scholar

Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature. 2015;520(7545):104-8. https://doi.org/10.1038/nature14052 PMid:25539086Search in Google Scholar

Linehan JL, Harrison OJ, Han SJ, Byrd AL, Vujkovic-Cvijin I, Villarino AV, et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172(4):784-96.e18. https://doi.org/10.1016/j.cell.2017.12.033 PMid:29358051Search in Google Scholar

Kim BE, Leung DYM. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(3):207-15. https://doi.org/10.4168/aair.2018.10.3.207 PMid:29676067Search in Google Scholar

Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol. 2016;42:1-8. https://doi.org/10.1016/j.coi.2016.05.002 PMid:27206013Search in Google Scholar

Friedman BC, Goldman RD. Anti-staphylococcal treatment in dermatitis. Can Fam Physician. 2011;57(6):669-71.Search in Google Scholar

Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850-9. https://doi.org/10.1101/gr.131029.111 PMid:22310478Search in Google Scholar

Tauber M, Balica S, Hsu CY, Jean-Decoster C, Lauze C, Redoules D, et al. Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. J Allergy Clin Immunol. 2016;137(4):1272-74.e3. https://doi.org/10.1016/j.jaci.2015.07.052 PMid:26559326Search in Google Scholar

Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE, et al. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun. 2017;85(6):e00994-16. https://doi.org/10.1128/IAI.00994-16 PMid:28373353Search in Google Scholar

Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49-62. https://doi.org/10.1038/nrmicro3161 PMid:24336184Search in Google Scholar

Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog. 2012;8(12):e1003092. https://doi.org/10.1371/journal.ppat.1003092 PMid:23300445Search in Google Scholar

Xu SX, McCormick JK. Staphylococcal superantigens in colonization and disease. Front Cell Infect Microbiol. 2012;2:52. https://doi.org/10.3389/fcimb.2012.00052 PMid:22919643Search in Google Scholar

Krakauer T, Pradhan K, Stiles BG. Staphylococcal superantigens spark host-mediated danger signals. Front Immunol. 2016;7:23. https://doi.org/10.3389/fimmu.2016.00023 PMid:26870039Search in Google Scholar

Schlievert PM, Case LC, Strandberg KL, Abrams BB, Leung DY. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clin Infect Dis. 2008;46(10):1562-7. https://doi.org/10.1086/586746 PMid:18419342Search in Google Scholar

Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Lüscher-Firzlaff J, et al. IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012;129(2):426-33.e4338. https://doi.org/10.1016/j.jaci.2011.10.042 PMid:22177328Search in Google Scholar

Brauweiler AM, Goleva E, Leung DY. Interferon-γ protects from staphylococcal alpha toxin-induced keratinocyte death through apolipoprotein L1. J Invest Dermatol. 2016;136(3):658-64. https://doi.org/10.1016/j.jid.2015.12.006 PMid:27015454Search in Google Scholar

Jun SH, Lee JH, Kim SI, Choi CW, Park TI, Jung HR, et al. Staphylococcus aureus -derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. Clin Exp Allergy. 2017;47(1):85-96. https://doi.org/10.1111/cea.12851 PMid:27910159Search in Google Scholar

Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Muñoz-Planillo R, Hasegawa M, et al. Staphylococcus θ-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397-401. https://doi.org/10.1038/nature12655 PMid:24172897Search in Google Scholar

Sonesson A, Przybyszewska K, Eriksson S, Mörgelin M, Kjellström S, Davies J, et al. Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis. Sci Rep. 2017;7(1):8689. https://doi.org/10.1038/s41598-017-08046-2 PMid:28821865Search in Google Scholar

Gonzalez T, Biagini Myers JM, Herr AB, Khurana Hershey GK. Staphylococcal biofilms in atopic dermatitis. Curr Allergy Asthma Rep. 2017;17(12):81. https://doi.org/10.1007/s11882-017-0750-x PMid:29063212Search in Google Scholar

Di Domenico EG, Cavallo I, Bordignon V, Prignano G, Sperduti I, Gurtner A, et al. Inflammatory cytokines and biofilm production sustain Staphylococcus aureus outgrowth and persistence: A pivotal interplay in the pathogenesis of Atopic Dermatitis. Sci Rep. 2018;8(1):9573. https://doi.org/10.1038/s41598-018-27421-1 PMid:29955077Search in Google Scholar

Eriksson S, van der Plas MJ, Mörgelin M, Sonesson A. Antibacterial and antibiofilm effects of sodium hypochlorite against Staphylococcus aureus isolates derived from patients with atopic dermatitis. Br J Dermatol. 2017;177(2):513-21. https://doi.org/10.1111/bjd.15410 PMid:28238217Search in Google Scholar

Wong SM, Ng TG, Baba R. Efficacy and safety of sodium hypochlorite (bleach) baths in patients with moderate to severe atopic dermatitis in Malaysia. J Dermatol. 2013;40(11):874-80. https://doi.org/10.1111/1346-8138.12265 PMid:24111816Search in Google Scholar

Doudoulakakis A, Spiliopoulou I, Spyridis N, Giormezis N, Kopsidas J, Militsopoulou M, et al. Emergence of a Staphylococcus aureus clone resistant to mupirocin and fusidic acid carrying exotoxin genes and causing mainly skin infections. J Clin Microbiol. 2017;55(8):2529-37. https://doi.org/10.1128/JCM.00406-17 PMid:28592549Search in Google Scholar

Leung DY. Can antibiotics be harmful in atopic dermatitis? Br J Dermatol. 2018;179(4):807-8. https://doi.org/10.1111/bjd.17023 PMid:30318811Search in Google Scholar

Błażewicz I, Jaśkiewicz M, Bauer M, Piechowicz L, Nowicki RJ, Kamysz W, et al. Decolonization of Staphylococcus aureus in patients with atopic dermatitis: A reason for increasing resistance to antibiotics? Postepy Dermatol Alergol. 2017;34(6):553-60. https://doi.org/10.5114/ada.2017.72461 PMid:29422820Search in Google Scholar

Cavalcante FS, Abad ED, Lyra YC, Saintive SB, Ribeiro M, Ferreira DC, et al. High prevalence of methicillin resistance and PVL genes among Staphylococcus aureus isolates from the nares and skin lesions of pediatric patients with atopic dermatitis. Braz J Med Biol Res. 2015;48(7):588-94. https://doi.org/10.1590/1414-431X20154221 PMid:25992644Search in Google Scholar

Jagadeesan S, Kurien G, Divakaran MV, Sadanandan SM, Sobhanakumari K, Sarin A. Methicillin-resistant Staphylococcus aureus colonization and disease severity in atopic dermatitis: A cross-sectional study from South India. Indian J Dermatol Venereol Leprol. 2014;80(3):229-34. https://doi.org/10.4103/0378-6323.132250 PMid:24823400Search in Google Scholar

Jung MY, Chung JY, Lee HY, Park J, Lee DY, Yang JM. Antibiotic susceptibility of Staphylococcus aureus in atopic dermatitis: Current prevalence of methicillin-resistant Staphylococcus aureus in Korea and treatment strategies. Ann Dermatol. 2015;27(4):398-403. https://doi.org/10.5021/ad.2015.27.4.398 PMid:26273155Search in Google Scholar

Błażewicz I, Jaśkiewicz M, Piechowicz L, Neubauer D, Nowicki RJ, Kamysz W, et al. Activity of antimicrobial peptides and conventional antibiotics against superantigen positive Staphylococcus aureus isolated from patients with atopic dermatitis. Postepy Dermatol Alergol. 2018;35(1):74-82. https://doi.org/10.5114/ada.2018.62141 PMid:29599675Search in Google Scholar

World Health Organization. Global Report on Psoriasis. Geneva: WHO; 2016. Available from: https://apps.who.int/iris/handle/10665/204417 [Last accessed on 2020 Jan 02].Search in Google Scholar

Boehncke WH, Schön MP. Psoriasis. Lancet. 2015;386(997):983-94. https://doi.org/10.1016/S0140-6736(14)61909-7 PMid:26025581Search in Google Scholar

Balci DD, Duran N, Ozer B, Gunesacar R, Onlen Y, Yenin JZ. High prevalence of Staphylococcus aureus cultivation and superantigen production in patients with psoriasis. Eur J Dermatol. 2009;19(3):238-42. https://doi.org/10.1684/ejd.2009.0663 PMid:19286488Search in Google Scholar

Zhang J, Shaver C, Neidig L, Jones K, Cusack CA, Allen HB. Toll-Like receptor 2 and its relationship with Streptococcus in psoriasis. Skinmed. 2017;15(1):27-30.Search in Google Scholar

Chang HW, Yan D, Singh R, Liu J, Lu X, Ucmak D, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6(1):154. https://doi.org/10.1186/s40168-018-0533-1 PMid:30185226Search in Google Scholar

Fyhrquist N, Muirhead G, Prast-Nielsen S, Jeanmougin M, Olah P, Skoog T, et al. Microbe-host interplay in atopic dermatitis and psoriasis. Nat Commun. 2019;10(1):4703. https://doi.org/10.1038/s41467-019-12253-y PMid:31619666Search in Google Scholar

Ryu S, Broussard L, Youn C, Song B, Norris D, Armstrong CA, et al. Therapeutic effects of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in psoriatic keratinocytes. Chonnam Med J. 2019;55(2):75-85. https://doi.org/10.4068/cmj.2019.55.2.75 PMid:31161119Search in Google Scholar

Göçmen Jülide Sedef, Sahiner N, Koçak M, Karahan ZC. PCR investigation of panton-valentine leukocidin, enterotoxin, exfoliative toxin, and agr genes in Staphylococcus aureus strains isolated from psoriasis patients. Turk J Med Sci. 2015;45(6):1345-52.Search in Google Scholar

Ng CY, Huang YH, Chu CF, Wu TC, Liu SH. Risks for Staphylococcus aureus colonization in patients with psoriasis: A systematic review and meta-analysis. Br J Dermatol. 2017;177(4):967-77. https://doi.org/10.1111/bjd.15366 PMid:28160277Search in Google Scholar

Coia JE, Duckworth GJ, Edwards DI, Farrington M, Fry C, Humphreys H, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63 Suppl 1:S1-44. https://doi.org/10.1016/j.jhin.2006.01.001 PMid:16581155Search in Google Scholar

Rahman M, Noble W, Cookson B, Baird D, Coia J. Mupirocin-resistant Staphylococcus aureus. Lancet. 1987;330:387-8.Search in Google Scholar

Pérez-Roth E, Claverie-Martín F, Batista N, Moreno A, Méndez-Alvarez S. Mupirocin resistance in methicillin-resistant Staphylococcus aureus clinical isolates in a Spanish hospital. Co-application of multiplex PCR assay and conventional microbiology methods. Diagn Microbiol Infect Dis. 2002;43(2):123-8. https://doi.org/10.1016/s0732-8893(02)00388-7 PMid:12088619Search in Google Scholar

Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother. 2015;59(6):3350-6. https://doi.org/10.1128/AAC.00079-15 PMid:25824213Search in Google Scholar

Sendker J, Sheridan H. History and current status of herbal medicines. In: Pelkonen O, Duez P, Vuorela PM, Vuorela H, editors. Toxicology of Herbal Products. Cham: Springer International Publishing; 2017. p. 11-27.Search in Google Scholar

Kumar S, Dobos GJ, Rampp T. The significance of ayurvedic medicinal plants. J Evid Based Complementary Altern Med. 2017;22(3):494-501. https://doi.org/10.1177/2156587216671392 PMid:27707902Search in Google Scholar

Hu J, Zhang J, Zhao W, Zhang Y, Zhang L, Shang H. Cochrane systematic reviews of Chinese herbal medicines: An overview. PLoS One. 2011;6(12):e28696. https://doi.org/10.1371/journal.pone.0028696 PMid:22174870Search in Google Scholar

Chevallier A. Encyclopedia of Herbal Medicine: 550 Herbs and Remedies for Common Ailments: Penguin. United Kingdom: DK Publishing; 2016.Search in Google Scholar

Clarke P. Aboriginal healing practices and Australian bush medicine. J Anthropol Soc South Aust. 2008;33:3-38.Search in Google Scholar

Rossiter SE, Fletcher MH, Wuest WM. Natural products as platforms to overcome antibiotic resistance. Chem Rev. 2017;117(19):12415-74. https://doi.org/10.1021/acs.chemrev.7b00283 PMid:28953368Search in Google Scholar

Abreu AC, McBain AJ, Simões M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep. 2012;29(9):1007-21. https://doi.org/10.1039/c2np20035j PMid:22786554Search in Google Scholar

Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia. 2011;82(1):34-7. https://doi.org/10.1016/j.fitote.2010.11.016 PMid:21075177Search in Google Scholar

Roberts SC. Production and engineering of terpenoids in plant cell culture. Nat Chem Biol. 2007;3(7):387-95. https://doi.org/10.1038/nchembio.2007.8 PMid:17576426Search in Google Scholar

Griffin SG, Wyllie SG, Markham JL, Leach DN. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragr J. 1999;14:322-32.Search in Google Scholar

Burt S. Essential oils: Their antibacterial properties and potential applications in foods--a review. Int J Food Microbiol. 2004;94(3):223-53. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 PMid:15246235Search in Google Scholar

Friedman M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J Agric Food Chem. 2014;62(31):7652-70. https://doi.org/10.1021/jf5023862 PMid:25058878Search in Google Scholar

Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, et al. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett. 2004;230(2):191-5. https://doi.org/10.1016/S0378-1097(03)00890-5 PMid:14757239Search in Google Scholar

Cho Y, Lee HJ. Antibacterial effects of carvacrol against Staphylococcus aureus and Escherichia coli O157: H7. J Biomed Res. 2014;15:117-22.Search in Google Scholar

García-Salinas S, Elizondo-Castillo H, Arruebo M, Mendoza G, Irusta S. Evaluation of the antimicrobial activity and cytotoxicity of different components of natural origin present in essential oils. Molecules. 2018;23(6):1399. https://doi.org/10.3390/molecules23061399 PMid:29890713Search in Google Scholar

Nazzaro F, Fratianni F, De Martino L, Coppola R, De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel). 2013;6(12):1451-74. https://doi.org/10.3390/ph6121451 PMid:24287491Search in Google Scholar

Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G. Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem. 2007;55(12):4863-70. https://doi.org/10.1021/jf0636465 PMid:17497876Search in Google Scholar

Bayer AS, Prasad R, Chandra J, Koul A, Smriti M, Varma A, et al. In vitro resistance of Staphylococcus aureus to thrombin-induced platelet microbicidal protein is associated with alterations in cytoplasmic membrane fluidity. Infect Immun. 2000;68(6):3548-53. https://doi.org/10.1128/iai.68.6.3548-3553.2000 PMid:10816510Search in Google Scholar

Mouwakeh A, Kincses A, Nové M, Mosolygó T, Mohácsi-Farkas C, Kiskó G, et al. Nigella sativa essential oil and its bioactive compounds as resistance modifiers against Staphylococcus aureus. Phytother Res. 2019;33(4):1010-8. https://doi.org/10.1002/ptr.6294 PMid:30672036Search in Google Scholar

Mahizan NA, Yang SK, Moo CL, Song AA, Chong CM, Chong CW, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631. https://doi.org/10.3390/molecules24142631 PMid:31330955Search in Google Scholar

Vasconcelos SE, Melo HM, Cavalcante TT, Júnior FE, de Carvalho MG, Menezes FG, et al. Plectranthus amboinicus essential oil and carvacrol bioactive against planktonic and biofilm of oxacillin- and vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2017;17(1):462. https://doi.org/10.1186/s12906-017-1968-9 PMid:28915875Search in Google Scholar

Marchese A, Arciola CR, Coppo E, Barbieri R, Barreca D, Chebaibi S, et al. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling. 2018;34(6):630-56. https://doi.org/10.1080/08927014.2018.1480756 PMid:30067078Search in Google Scholar

Hyldgaard M, Mygind T, Meyer RL. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front Microbiol. 2012;3:12. https://doi.org/10.3389/fmicb.2012.00012 PMid:22291693Search in Google Scholar

Mir M, Ahmed N, Permana AD, Rodgers AM, Donnelly RF, Rehman AU. Enhancement in site-specific delivery of carvacrol against methicillin resistant Staphylococcus aureus induced skin infections using enzyme responsive nanoparticles: A proof of concept study. Pharmaceutics. 2019;11(11):606. https://doi.org/10.3390/pharmaceutics11110606 PMid:31766227Search in Google Scholar

Goodner K, Mahattanatawee K, Plotto A, Sotomayor J, Jordan M. Aromatic profiles of Thymus hyemalis and Spanish T. vulgaris essential oils by GC–MS/GC–O. Ind Crops Prod. 2006;24:264-8.Search in Google Scholar

Figiel A, Szumny A, Gutiérrez-Ortíz A, Carbonell-Barrachina ÁA. Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J Food Eng. 2010;98:240-7. https://doi.org/10.1016/j.jfoodeng.2010.01.002Search in Google Scholar

Deb DD, Parimala G, Saravana Devi S, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact. 2011;193(1):97-106. https://doi.org/10.1016/j.cbi.2011.05.009 PMid:21640085Search in Google Scholar

Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MD, Segura-Carretero A, et al. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res. 2018;32(9):1688-706. https://doi.org/10.1002/ptr.6109 PMid:29785774Search in Google Scholar

Andersen A. Final report on the safety assessment of sodium p-chloro-m-cresol, p-chloro-m-cresol, chlorothymol, mixed cresols, m-cresol, o-cresol, p-cresol, isopropyl cresols, thymol, o-cymen-5-ol, and carvacrol. Int J Toxicol. 2006;25 Suppl 1:29-127. https://doi.org/10.1080/10915810600716653 PMid:16835130Search in Google Scholar

Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: A comparative study. Eur Arch Paediatr Dent. 2015;16(6):449-54. https://doi.org/10.1007/s40368-015-0192-x PMid:26059497Search in Google Scholar

Kifer D, Mužinić V, Klarić MŠ. Antimicrobial potency of single and combined mupirocin and monoterpenes, thymol, menthol and 1,8-cineole against Staphylococcus aureus planktonic and biofilm growth. J Antibiot (Tokyo). 2016;69(9):689-96. https://doi.org/10.1038/ja.2016.10 PMid:26883392Search in Google Scholar

Hamoud R, Zimmermann S, Reichling J, Wink M. Synergistic interactions in two-drug and three-drug combinations (thymol, EDTA and vancomycin) against multi drug resistant bacteria including E. coli. Phytomedicine. 2014;21(4):443-7. https://doi.org/10.1016/j.phymed.2013.10.016 PMid:24262063Search in Google Scholar

Lv F, Liang H, Yuan Q, Li C. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int. 2011;44(9):3057-64. https://doi.org/10.1016/j.foodres.2011.07.030Search in Google Scholar

Zhou W, Wang Z, Mo H, Zhao Y, Li H, Zhang H, et al. Thymol mediates bactericidal activity against Staphylococcus aureus by targeting an aldo-keto reductase and consequent depletion of NADPH. J Agric Food Chem. 2019;67:8382-92. https://doi.org/10.1021/acs.jafc.9b03517 PMid:31271032Search in Google Scholar

Yuan Z, Dai Y, Ouyang P, Rehman T, Hussain S, Zhang T, et al. Thymol inhibits biofilm formation, eliminates pre-existing biofilms, and enhances clearance of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritoneal implant infection model. Microorganisms. 2020;8(1):99. https://doi.org/10.3390/microorganisms8010099 PMid:31936809Search in Google Scholar

Kwon HI, Jeong NH, Jun SH, Son JH, Kim S, Jeon H, et al. Thymol attenuates the worsening of atopic dermatitis induced by Staphylococcus aureus membrane vesicles. Int Immunopharmacol. 2018;59:301-9. https://doi.org/10.1016/j.intimp.2018.04.027 PMid:29679854Search in Google Scholar

Kwon HI, Jeong NH, Kim SY, Kim MH, Son JH, Jun SH, et al. Inhibitory effects of thymol on the cytotoxicity and inflammatory responses induced by Staphylococcus aureus extracellular vesicles in cultured keratinocytes. Microb Pathog. 2019;134:103603. https://doi.org/10.1016/j.micpath.2019.103603 PMid:31226290Search in Google Scholar

Carson CF, Cookson BD, Farrelly HD, Riley TV. Susceptibility of methicillin-resistant Staphylococcus aureus to the essential oil of Melaleuca alternifolia. J Antimicrob Chemother. 1995;35(3):421-4. https://doi.org/10.1093/jac/35.3.421 PMid:7782258Search in Google Scholar

Schnitzler P, Schön K, Reichling J. Antiviral activity of Australian tea tree oil and eucalyptus oil against herpes simplex virus in cell culture. Pharmazie. 2001;56(4):343-7.Search in Google Scholar

Mondello F, De Bernardis F, Girolamo A, Salvatore G, Cassone A. In vitro and in vivo activity of tea tree oil against azole-susceptible and -resistant human pathogenic yeasts. J Antimicrob Chemother. 2003;51(5):1223-9. https://doi.org/10.1093/jac/dkg202 PMid:12668571Search in Google Scholar

Hammer KA, Dry L, Johnson M, Michalak EM, Carson CF, Riley TV. Susceptibility of oral bacteria to Melaleuca alternifolia (tea tree) oil in vitro. Oral Microbiol Immunol. 2003;18(6):389-92. https://doi.org/10.1046/j.0902-0055.2003.00105.x PMid:14622345Search in Google Scholar

Loughlin R, Gilmore BF, McCarron PA, Tunney MM. Comparison of the cidal activity of tea tree oil and terpinen-4-ol against clinical bacterial skin isolates and human fibroblast cells. Lett Appl Microbiol. 2008;46(4):428-33. https://doi.org/10.1111/j.1472-765X.2008.02334.x PMid:18298453Search in Google Scholar

Noumi E, Merghni A, M Alreshidi M, Haddad O, Akmadar G, De Martino L, et al. Chromobacterium violaceum and Pseudomonas aeruginosa PAO1: Models for evaluating anti-quorum sensing activity of Melaleuca alternifolia essential oil and its main component Terpinen-4-ol. Molecules. 2018;23(10):2672. https://doi.org/10.3390/molecules23102672 PMid:30336602Search in Google Scholar

Brun P, Bernabè G, Filippini R, Piovan A. In vitro antimicrobial activities of commercially available tea tree (Melaleuca alternifolia) essential oils. Curr Microbiol. 2019;76(1):108-16. https://doi.org/10.1007/s00284-018-1594-x PMid:30421144Search in Google Scholar

Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914-20. https://doi.org/10.1128/AAC.46.6.1914-1920.2002 PMid:12019108Search in Google Scholar

Jacobs MR, Appelbaum PC. Nadifloxacin: A quinolone for topical treatment of skin infections and potential for systemic use of its active isomer, WCK 771. Expert Opin Pharmacother. 2006;7(14):1957-66. https://doi.org/10.1517/14656566.7.14.1957 PMid:17020421Search in Google Scholar

Li WR, Li HL, Shi QS, Sun TL, Xie XB, Song B, et al. The dynamics and mechanism of the antimicrobial activity of tea tree oil against bacteria and fungi. Appl Microbiol Biotechnol. 2016;100(20):8865-75. https://doi.org/10.1007/s00253-016-7692-4 PMid:27388769Search in Google Scholar

Sanyal D, Greenwood D. An electronmicroscope study of glycopeptide antibiotic-resistant strains of Staphylococcus epidermidis. J Med Microbiol. 1993;39(3):204-10. https://doi.org/10.1099/00222615-39-3-204 PMid:8366519Search in Google Scholar

Corre J, Lucchini JJ, Mercier GM, Cremieux A. Antibacterial activity of phenethyl alcohol and resulting membrane alterations. Res Microbiol. 1990;141(4):483-97. https://doi.org/10.1016/0923-2508(90)90074-z PMid:1697975Search in Google Scholar

Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO. Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J Herb Med. 2019;20:100289. https://doi.org/10.1016/j.hermed.2019.100289Search in Google Scholar

Kwieciński J, Eick S, Wójcik K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents. 2009;33(4):343-7. https://doi.org/10.1016/j.ijantimicag.2008.08.028 PMid:19095413Search in Google Scholar

Brady A, Loughlin R, Gilpin D, Kearney P, Tunney M. In vitro activity of tea-tree oil against clinical skin isolates of meticillin-resistant and -sensitive Staphylococcus aureus and coagulase-negative staphylococci growing planktonically and as biofilms. J Med Microbiol. 2006;55(Pt 10):1375-80. https://doi.org/10.1099/jmm.0.46558-0 PMid:17005786Search in Google Scholar

Hammer KA, Carson CF, Riley TV. Frequencies of resistance to Melaleuca alternifolia (tea tree) oil and rifampicin in Staphylococcus aureus, Staphylococcus epidermidis and Enterococcus faecalis. Int J Antimicrob Agents. 2008;32(2):170-3. https://doi.org/10.1016/j.ijantimicag.2008.03.013 PMid:18571379Search in Google Scholar

Ferrini AM, Mannoni V, Aureli P, Salvatore G, Piccirilli E, Ceddia T, et al. Melaleuca alternifolia essential oil possesses potent anti-staphylococcal activity extended to strains resistant to antibiotics. Int J Immunopathol Pharmacol. 2006;19(3):539-44. https://doi.org/10.1177/039463200601900309 PMid:17026838Search in Google Scholar

Papadopoulos CJ, Carson CF, Hammer KA, Riley TV. Susceptibility of pseudomonads to Melaleuca alternifolia (tea tree) oil and components. J Antimicrob Chemother. 2006;58(2):449-51. https://doi.org/10.1093/jac/dkl200 PMid:16735435Search in Google Scholar

Papadopoulos CJ, Carson CF, Chang BJ, Riley TV. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. Appl Environ Microbiol. 2008;74(6):1932-5. https://doi.org/10.1128/AEM.02334-07 PMid:18192403Search in Google Scholar

Hammer KA, Carson CF, Riley TV. Effects of Melaleuca alternifolia (tea tree) essential oil and the major monoterpene component terpinen-4-ol on the development of single- and multistep antibiotic resistance and antimicrobial susceptibility. Antimicrob Agents Chemother. 2012;56(2):909-15. https://doi.org/10.1128/AAC.05741-11 PMid:22083482Search in Google Scholar

Thomsen NA, Hammer KA, Riley TV, Van Belkum A, Carson CF. Effect of habituation to tea tree (Melaleuca alternifolia) oil on the subsequent susceptibility of Staphylococcus spp. to antimicrobials, triclosan, tea tree oil, terpinen-4-ol and carvacrol. Int J Antimicrob Agents. 2013;41(4):343-51. https://doi.org/10.1016/j.ijantimicag.2012.12.011 PMid:23481659Search in Google Scholar

Hart PH, Brand C, Carson CF, Riley TV, Prager RH, Finlay-Jones JJ. Terpinen-4-ol, the main component of the essential oil of Melaleuca alternifolia (tea tree oil), suppresses inflammatory mediator production by activated human monocytes. Inflamm Res. 2000;49(11):619-26. https://doi.org/10.1007/s000110050639 PMid:11131302Search in Google Scholar

Nogueira MN, Aquino SG, Rossa Junior C, Spolidorio DM. Terpinen-4-ol and alpha-terpineol (tea tree oil components) inhibit the production of IL-1β, IL-6 and IL-10 on human macrophages. Inflamm Res. 2014;63(9):769-78. https://doi.org/10.1007/s00011-014-0749-x PMid:24947163Search in Google Scholar

Brand C, Ferrante A, Prager RH, Riley TV, Carson CF, Finlay-Jones JJ, et al. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflamm Res. 2001;50:213-9. https://doi.org/10.1007/s000110050746Search in Google Scholar

Koh KJ, Pearce AL, Marshman G, Finlay-Jones JJ, Hart PH. Tea tree oil reduces histamine-induced skin inflammation. Br J Dermatol. 2002;147(6):1212-7. https://doi.org/10.1046/j.1365-2133.2002.05034.x PMid:12452873Search in Google Scholar

Han X, Parker TL. Melaleuca (Melaleuca alternifolia) essential oil demonstrates tissue-remodeling and metabolism-modulating activities in human skin cells. Cogent Biol. 2017;3:1318476.Search in Google Scholar

Aspres N, Freeman S. Predictive testing for irritancy and allergenicity of tea tree oil in normal human subjects. Exogenous Dermatol. 2003;2:258-61.Search in Google Scholar

Rubel DM, Freeman S, Southwell IA. Tea tree oil allergy: What is the offending agent? Report of three cases of tea tree oil allergy and review of the literature. Australas J Dermatol. 1998;39(4):244-7. https://doi.org/10.1111/j.1440-0960.1998.tb01482.x PMid:9838722Search in Google Scholar

Hausen BM, Reichling J, Harkenthal M. Degradation products of monoterpenes are the sensitizing agents in tea tree oil. Am J Contact Dermat. 1999;10(2):68-77. https://doi.org/10.1016/s1046-199x(99)90002-7 PMid:10357714Search in Google Scholar

Rudbäck J, Bergström MA, Börje A, Nilsson U, Karlberg AT. α-Terpinene, an antioxidant in tea tree oil, autoxidizes rapidly to skin allergens on air exposure. Chem Res Toxicol. 2012;25(3):713-21. https://doi.org/10.1021/tx200486f PMid:22250748Search in Google Scholar

Tisserand R, Young R. Constituent profiles. In: Essential Oil Safety. 2nd ed. St. Louis: Churchill Livingstone; 2014. p. 483-647.Search in Google Scholar

Wang X, Wang Q, Shi J. Simulation of the vacuum distillation separating process of citral from litsea cubeba oil. Med Plant. 2013;4:8.Search in Google Scholar

Shi C, Song K, Zhang X, Sun Y, Sui Y, Chen Y, et al. Antimicrobial activity and possible mechanism of action of citral against Cronobacter sakazakii. PLoS One. 2016;11(7):e0159006. https://doi.org/10.1371/journal.pone.0159006 PMid:27415761Search in Google Scholar

Saddiq AA, Khayyat SA. Chemical and antimicrobial studies of monoterpene: Citral. Pest Biochem Physiol. 2010;98:89-93. https://doi.org/10.1016/j.pestbp.2010.05.004Search in Google Scholar

Wuryatmo E, Klieber A, Scott ES. Inhibition of Citrus postharvest pathogens by vapor of citral and related compounds in culture. J Agric Food Chem. 2003;51(9):2637-40. https://doi.org/10.1021/jf026183l PMid:12696950.Search in Google Scholar

Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, et al. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep. 2019;9(1):1614. https://doi.org/10.1038/s41598-018-38214-x PMid:30733560Search in Google Scholar

Dudai N, Weinstein Y, Krup M, Rabinski T, Ofir R. Citral is a new inducer of caspase-3 in tumor cell lines. Planta Med. 2005;71(5):484-8. https://doi.org/10.1055/s-2005-864146 PMid:15931590Search in Google Scholar

Kim JJ, In YW, Oh SW. Antimicrobial activity of citral against Salmonella Typhimurium and Staphylococcus aureus. Korean J Food Sci Technol. 2011;43:791-4.Search in Google Scholar

Vimal M, Vijaya P, Mumtaj P, Farhath M. Antibacterial activity of selected compounds of essential oils from indigenous plants. J Chem Pharm Res. 2013;5:248-53.Search in Google Scholar

Long N, Tang H, Sun F, Lin L, Dai M. Effect and mechanism of citral against methicillin-resistant Staphylococcus aureus in vivo. J Sci Food Agric. 2019;99(9):4423-9. https://doi.org/10.1002/jsfa.9677 PMid:30891759Search in Google Scholar

Gupta P, Patel DK, Gupta VK, Pal A, Tandon S, Darokar MP. Citral, a monoterpenoid aldehyde interacts synergistically with norfloxacin against methicillin resistant Staphylococcus aureus. Phytomedicine. 2017;34:85-96. https://doi.org/10.1016/j.phymed.2017.08.016 PMid:28899514Search in Google Scholar

Ambade SV, Nagarkar SS, Deshpande NM. Evaluation of lemon grass essential oil as an antimicrobial agent against clinical isolates of MRSA, VRSA and VRE. Int J Biotechnol Biochem. 2017;13:377-90.Search in Google Scholar

Hu W, Li C, Dai J, Cui H, Lin L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind Crops Prod. 2019;130:34-41. https://doi.org/10.1016/j.indcrop.2018.12.078Search in Google Scholar

Stotz SC, Vriens J, Martyn D, Clardy J, Clapham DE. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons. PLoS One. 2008;3(5):e2082. https://doi.org/10.1371/journal.pone.0002082 PMid:18461159Search in Google Scholar

Hagvall L, Bruze M, Engfeldt M, Isaksson M, Lindberg M, Ryberg K, et al. Contact allergy to citral and its constituents geranial and neral, coupled with reactions to the prehapten and prohapten geraniol. Contact Dermatitis. 2020;82:31-38. https://doi.org/10.1111/cod.13404 PMid:31566752Search in Google Scholar

De Mozzi P, Johnston GA. An outbreak of allergic contact dermatitis caused by citral in beauticians working in a health spa. Contact Dermatitis. 2014;70(6):377-9. https://doi.org/10.1111/cod.12173 PMid:24846588Search in Google Scholar

Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H. Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol. 2003;22(7):355-62. https://doi.org/10.1191/0960327103ht379oa PMid:12929725Search in Google Scholar

Lee KG, Shibamoto T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J Agric Food Chem. 2000;48(9):4290-3. https://doi.org/10.1021/jf000442u PMid:10995351Search in Google Scholar

Chatterjee D, Bhattacharjee P. Use of eugenol-lean clove extract as a flavoring agent and natural antioxidant in mayonnaise: Product characterization and storage study. J Food Sci Technol. 2015;52(8):4945-54. https://doi.org/10.1007/s13197-014-1573-6 PMid:26243914Search in Google Scholar

Fujisawa S, Murakami Y. Eugenol and its role in chronic diseases. Adv Exp Med Biol. 2016;929:45-66. https://doi.org/10.1007/978-3-319-41342-6_3 PMid:27771920Search in Google Scholar

Abdullah ML, Hafez MM, Al-Hoshani A, Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement Altern Med. 2018;18(1):321. https://doi.org/10.1186/s12906-018-2392-5 PMid:30518369Search in Google Scholar

Khalil AA, Ur Rahman U, Khan MR, Sahar A, Mehmood T, Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Adv. 2017;7:32669-81.Search in Google Scholar

Apolónio J, Faleiro ML, Miguel MG, Neto L. No induction of antimicrobial resistance in Staphylococcus aureus and Listeria monocytogenes during continuous exposure to eugenol and citral. FEMS Microbiol Lett. 2014;354(2):92-101. https://doi.org/10.1111/1574-6968.12440 PMid:24716611Search in Google Scholar

Al-Shabib NA, Husain FM, Ahmad I, Baig MH. Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol Biotechnol Equipment. 2017;31:387-96.Search in Google Scholar

Yadav MK, Chae SW, Im GJ, Chung JW, Song JJ. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One. 2015;10(3):e0119564. https://doi.org/10.1371/journal.pone.0119564 PMid:25781975Search in Google Scholar

Beenken KE, Mrak LN, Griffin LM, Zielinska AK, Shaw LN, Rice KC, et al. Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PLoS One. 2010;5:e10790. https://doi.org/10.1371/journal.pone.0010790Search in Google Scholar

Kwiatkowski P, Pruss A, Wojciuk B, Dołęgowska B, Wajs-Bonikowska A, Sienkiewicz M, et al. The influence of essential oil compounds on antibacterial activity of mupirocin-susceptible and induced low-level mupirocin-resistant MRSA strains. Molecules. 2019;24(17):105. https://doi.org/10.3390/molecules24173105 PMid:31461850Search in Google Scholar

Lestari ML, Indrayanto G. Curcumin. In: Brittain HG, editor. Profiles of Drug Substances, Excipients and Related Methodology. Vol. 39., Ch. 3. Cambridge: Academic Press; 2014. p. 113-204.Search in Google Scholar

Reddy RC, Vatsala PG, Keshamouni VG, Padmanaban G, Rangarajan PN. Curcumin for malaria therapy. Biochem Biophys Res Commun. 2005;326(2):472-4. https://doi.org/10.1016/j.bbrc.2004.11.051 PMid:15582601Search in Google Scholar

Wright LE, Frye JB, Gorti B, Timmermann BN, Funk JL. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr Pharm Des. 2013;19(34):6218-25. https://doi.org/10.2174/1381612811319340013 PMid:23448448Search in Google Scholar

Mazzolani F, Togni S. Oral administration of a curcuminphospholipid delivery system for the treatment of central serous chorioretinopathy: A 12-month follow-up study. Clin Ophthalmol. 2013;7:939-45. https://doi.org/10.2147/OPTH.S45820 PMid:23723686Search in Google Scholar

Allegri P, Mastromarino A, Neri P. Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol. 2010;4:1201-6. https://doi.org/10.2147/OPTH.S13271 PMid:21060672Search in Google Scholar

Ghosh D, Bagchi D, Konishi T. Clinical Aspects of Functional Foods and Nutraceuticals. United States: CRC Press; 2014.Search in Google Scholar

Schraufstatter E, Bernt H. Antibacterial action of curcumin and related compounds. Nature. 1949;164(4167):456. https://doi.org/10.1038/164456a0 PMid:18140450Search in Google Scholar

Gunes H, Gulen D, Mutlu R, Gumus A, Tas T, Topkaya AE. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol Ind Health. 2016;32(2):246-50. https://doi.org/10.1177/0748233713498458 PMid:24097361Search in Google Scholar

Tajbakhsh S, Mohammadi K, Deilami I, Zandi K, Fouladvand M, Ramedani E, et al. Antibacterial activity of indium curcumin and indium diacetylcurcumin. Afr J Biotechnol. 2008;7:3832-5.Search in Google Scholar

Sivasothy Y, Sulaiman SF, Ooi KL, Ibrahim H, Awang K. Antioxidant and antibacterial activities of flavonoids and curcuminoids from Zingiber spectabile Griff. Food Control. 2013;30:714-20. https://doi.org/10.1016/j.foodcont.2012.09.012Search in Google Scholar

Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, et al. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014;19(11):18283-95. https://doi.org/10.3390/molecules191118283 PMid:25389660Search in Google Scholar

Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8-9):714-8. https://doi.org/10.1016/j.phymed.2013.02.006 PMid:23537748Search in Google Scholar

Teow SY, Ali SA. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci. 2015;28(6):2109-14. PMid:26639480Search in Google Scholar

Moghaddam KM, Iranshahi M, Yazdi MC, Shahverdi AR. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int J Green Pharm. 2009;3:141-3.Search in Google Scholar

Sardi JC, Polaquini CR, Freires IA, Galvão LC, Lazarini JG, Torrezan GS, et al. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J Med Microbiol. 2017;66(6):816-24. https://doi.org/10.1099/jmm.0.000494 PMid:28598304Search in Google Scholar

Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, et al. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73-80. https://doi.org/10.1016/j.biochi.2016.01.013 PMid:26826458Search in Google Scholar

Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One. 2013;8(6):e67078. https://doi.org/10.1371/journal.pone.0067078 PMid:23825622Search in Google Scholar

Bahraini P, Rajabi M, Mansouri P, Sarafian G, Chalangari R, Azizian Z. Turmeric tonic as a treatment in scalp psoriasis: A randomized placebo-control clinical trial. J Cosmet Dermatol. 2018;17(3):461-6. https://doi.org/10.1111/jocd.12513 PMid:29607625Search in Google Scholar

Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (Meriva) is effective as an adjuvant treatment and is able to reduce IL-22 serum levels in patients with psoriasis vulgaris. Biomed Res Int. 2015;2015:283634. https://doi.org/10.1155/2015/283634 PMid:26090395Search in Google Scholar

Kurd SK, Smith N, VanVoorhees A, Troxel AB, Badmaev V, Seykora JT, et al. Oral curcumin in the treatment of moderate to severe psoriasis vulgaris: A prospective clinical trial. J Am Acad Dermatol. 2008;58(4):625-31. https://doi.org/10.1016/j.jaad.2007.12.035 PMid:18249471Search in Google Scholar

Gadekar R, Saurabh MK, Thakur GS, Saurabh A. Study of formulation, characterisation and wound healing potential of transdermal patches of curcumin. Asian J Pharm Clin Res. 2012;5:225.Search in Google Scholar

Phan TT, See P, Lee ST, Chan SY. Protective effects of curcumin against oxidative damage on skin cells in vitro: Its implication for wound healing. J Trauma. 2001;51(5):927-31. https://doi.org/10.1097/00005373-200111000-00017 PMid:11706342Search in Google Scholar

Subudhi U, Chainy GB. Expression of hepatic antioxidant genes in l-thyroxine-induced hyperthyroid rats: Regulation by vitamin E and curcumin. Chem Biol Interact. 2010;183(2):304-16. https://doi.org/10.1016/j.cbi.2009.11.004 PMid:19914224Search in Google Scholar

Mohanty C, Das M, Sahoo SK. Sustained wound healing activity of curcumin loaded oleic acid based polymeric bandage in a rat model. Mol Pharm. 2012;9(10):2801-11. https://doi.org/10.1021/mp300075u PMid:22946786Search in Google Scholar

Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen. 1998;6(2):167-77. https://doi.org/10.1046/j.1524-475x.1998.60211.x PMid:9776860Search in Google Scholar

Akbik D, Ghadiri M, Chrzanowski W, Rohanizadeh R. Curcumin as a wound healing agent. Life Sci. 2014;116(1):1-7. https://doi.org/10.1016/j.lfs.2014.08.016 PMid:25200875Search in Google Scholar

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113r PMid:17999464Search in Google Scholar

Han HK. The effects of black pepper on the intestinal absorption and hepatic metabolism of drugs. Expert Opin Drug Metab Toxicol. 2011;7(6):721-9. https://doi.org/10.1517/17425255.2011.570332 PMid:21434835Search in Google Scholar

Nguyen MH, Vu NB, Nguyen TH, Le HS, Le HT, Tran TT, et al. In vivo comparison of wound healing and scar treatment effect between curcumin-oligochitosan nanoparticle complex and oligochitosan-coated curcumin-loaded-liposome. J Microencapsul. 2019;36(2):156-68. https://doi.org/10.1080/02652048.2019.1612476 PMid:31030591Search in Google Scholar

Karri VV, Kuppusamy G, Talluri SV, Mannemala SS, Kollipara R, Wadhwani AD, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol. 2016;93(Pt B):1519-29. https://doi.org/10.1016/j.ijbiomac.2016.05.038 PMid:27180291Search in Google Scholar

Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa. Asian Pac J Trop Biomed. 2013;3(8):663-7. https://doi.org/10.1016/S2221-1691(13)60133-1 PMid:23905026Search in Google Scholar

Yamashita S, Yokoyama K, Matsumiya N, Yamaguchi H. Successful green tea nebulization therapy for subglottic tracheal stenosis due to MRSA infection. J Infect. 2001;42(3):222-3. https://doi.org/10.1053/jinf.2001.0766 PMid:11545562Search in Google Scholar

Yamada H, Ohashi K, Atsumi T, Okabe H, Shimizu T, Nishio S, et al. Effects of tea catechin inhalation on methicillin-resistant Staphylococcus aureus in elderly patients in a hospital ward. J Hosp Infect. 2003;53(3):229-31. https://doi.org/10.1053/jhin.2002.1327 PMid:12623326Search in Google Scholar

Yamada H, Tateishi M, Harada K, Ohashi T, Shimizu T, Atsumi T, et al. A randomized clinical study of tea catechin inhalation effects on methicillin-resistant Staphylococcus aureus in disabled elderly patients. J Am Med Dir Assoc. 2006;7(2):79-83. https://doi.org/10.1016/j.jamda.2005.06.002 PMid:16461248Search in Google Scholar

Yam TS, Hamilton-Miller JM, Shah S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J Antimicrob Chemother. 1998;42(2):211-6. https://doi.org/10.1093/jac/42.2.211 PMid:9738838Search in Google Scholar

Lee JH, Shim JS, Chung MS, Lim ST, Kim KH. In vitro anti-adhesive activity of green tea extract against pathogen adhesion. Phytother Res. 2009;23(4):460-6. https://doi.org/10.1002/ptr.2609 PMid:19107860Search in Google Scholar

Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R. Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem. 2012;135(2):672-5. https://doi.org/10.1016/j.foodchem.2012.04.143 PMid:22868144Search in Google Scholar

Janecki A, Kolodziej H. Anti-adhesive activities of flavan-3-ols and proanthocyanidins in the interaction of group A-streptococci and human epithelial cells. Molecules. 2010;15(10):7139-52. https://doi.org/10.3390/molecules15107139 PMid:20953158Search in Google Scholar

Busscher HJ, Norde W, van der Mei HC. Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol. 2008;74(9):2559-64. https://doi.org/10.1128/AEM.02839-07 PMid:18344352Search in Google Scholar

Stapleton PD, Shah S, Anderson JC, Hara Y, Hamilton-Miller JM, Taylor PW. Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates. Int J Antimicrob Agents. 2004;23(5):462-7. https://doi.org/10.1016/j.ijantimicag.2003.09.027 PMid:15120724Search in Google Scholar

Hu ZQ, Zhao WH, Hara Y, Shimamura T. Epigallocatechin gallate synergy with ampicillin/sulbactam against 28 clinical isolates of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2001;48(3):361-4. https://doi.org/10.1093/jac/48.3.361 PMid:11533000Search in Google Scholar

Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and beta-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001;45(6):1737-42. https://doi.org/10.1128/AAC.45.6.1737-1742.2001 PMid:11353619Search in Google Scholar

Novy P, Rondevaldova J, Kourimska L, Kokoska L. Synergistic interactions of epigallocatechin gallate and oxytetracycline against various drug resistant Staphylococcus aureus strains in vitro. Phytomedicine. 2013;20(5):432-5. https://doi.org/10.1016/j.phymed.2012.12.010 PMid:23485046Search in Google Scholar

Hu ZQ, Zhao WH, Asano N, Yoda Y, Hara Y, Shimamura T. Epigallocatechin gallate synergistically enhances the activity of carbapenems against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(2):558-60. https://doi.org/10.1128/AAC.46.2.558-560.2002 PMid:11796378Search in Google Scholar

Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother. 2002;46(7):2266-8. https://doi.org/10.1128/AAC.46.7.2266-2268.2002 PMid:12069986Search in Google Scholar

Sudano Roccaro A, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother. 2004;48(6):1968-73. https://doi.org/10.1128/AAC.48.6.1968-1973.2004 PMid:15155186Search in Google Scholar

Bikels-Goshen T, Landau E, Saguy S, Shapira R. Staphylococcal strains adapted to epigallocathechin gallate (EGCG) show reduced susceptibility to vancomycin, oxacillin and ampicillin, increased heat tolerance, and altered cell morphology. Int J Food Microbiol. 2010;138(1-2):26-31. https://doi.org/10.1016/j.ijfoodmicro.2010.01.011 PMid:20132996Search in Google Scholar

Singh VK, Utaida S, Jackson LS, Jayaswal RK, Wilkinson BJ, Chamberlain NR. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology (Reading). 2007;153(Pt 9):3162-73. https://doi.org/10.1099/mic.0.2007/009506-0 PMid:17768259Search in Google Scholar

Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D. Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother. 2005;49(10):4339-43. https://doi.org/10.1128/AAC.49.10.4339-4343.2005 PMid:16189116Search in Google Scholar

Carpentier B, Cerf O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J Appl Bacteriol. 1993;75(6):499-511. https://doi.org/10.1111/j.1365-2672.1993.tb01587.x PMid:8294303Search in Google Scholar

Marinelli P, Pallares I, Navarro S, Ventura S. Dissecting the contribution of Staphylococcus aureus α-phenol-soluble modulins to biofilm amyloid structure. Sci Rep. 2016;6:34552. https://doi.org/10.1038/srep34552 PMid:27708403Search in Google Scholar

Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T. Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater. 2013;9(2):5216-25. https://doi.org/10.1016/j.actbio.2012.10.014 PMid:23072830Search in Google Scholar

Kim HL, Lee JH, Kwon BJ, Lee MH, Han DW, Hyon SH, et al. Promotion of full-thickness wound healing using epigallocatechin-3-O-gallate/poly (lactic-co-glycolic acid) membrane as temporary wound dressing. Artif Organs. 2014;38:411-417. https://doi.org/10.1111/aor.12190Search in Google Scholar

Huang YW, Zhu QQ, Yang XY, Xu HH, Sun B, Wang XJ, et al. Wound healing can be improved by (-)-epigallocatechin gallate through targeting Notch in streptozotocin-induced diabetic mice. FASEB J. 2019;33(1):953-64. https://doi.org/10.1096/fj.201800337R PMid:30070931Search in Google Scholar

Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr. 2018;58(6):924-41. https://doi.org/10.1080/10408398.2016.1231168 PMid:27645804Search in Google Scholar

Liu Z, Bruins ME, Ni L, Vincken JP. Green and black tea phenolics: Bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota. J Agric Food Chem. 2018;66(32):8469-77. https://doi.org/10.1021/acs.jafc.8b02233 PMid:30020786Search in Google Scholar

Dkhil MA, Abdel-Baki AS, Wunderlich F, Sies H, Al-Quraishy S. Anticoccidial and antiinflammatory activity of garlic in murine Eimeria papillata infections. Vet Parasitol. 2011;175(1-2):66-72. https://doi.org/10.1016/j.vetpar.2010.09.009 PMid:20943319Search in Google Scholar

Meriga B, Mopuri R, MuraliKrishna T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac J Trop Med. 2012;5(5):391-5. https://doi.org/10.1016/S1995-7645(12)60065-0 PMid:22546657Search in Google Scholar

Cavallito CJ, Buck JS, Suter C. Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structure. J Am Chem Soc. 1944;66:1952-4.Search in Google Scholar

Lawson LD, Wang ZJ. Allicin and allicin-derived garlic compounds increase breath acetone through allyl methyl sulfide: Use in measuring allicin bioavailability. J Agric Food Chem. 2005;53(6):1974-83. https://doi.org/10.1021/jf048323s PMid:15769123Search in Google Scholar

Block E. The chemistry of garlic and onions. Sci Am. 1985;252(3):114-9. https://doi.org/10.1038/scientificamerican0385-114 PMid:3975593Search in Google Scholar

Ilić DP, Nikolić VD, Nikolić LB, Stanković MZ, Stanojević LP, Cakić MD. Allicin and related compounds: Biosynthesis, synthesis and pharmacological activity. Facta Univ Ser Phys Chem Technol. 2011;9:9-20.Search in Google Scholar

Cutler RR, Wilson P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br J Biomed Sci. 2004;61(2):71-4. https://doi.org/10.1080/09674845.2004.11732646 PMid:15250668Search in Google Scholar

Müller A, Eller J, Albrecht F, Prochnow P, Kuhlmann K, Bandow JE, et al. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. J Biol Chem. 2016;291(22):11477-90. https://doi.org/10.1074/jbc.M115.702308 PMid:27008862Search in Google Scholar

Gruhlke MCH, Antelmann H, Bernhardt J, Kloubert V, Rink L, Slusarenko AJ. The human allicin-proteome: S-thioallylation of proteins by the garlic defence substance allicin and its biological effects. Free Radic Biol Med. 2019;131:144-53. https://doi.org/10.1016/j.freeradbiomed.2018.11.022 PMid:30500420Search in Google Scholar

Fujisawa H, Watanabe K, Suma K, Origuchi K, Matsufuji H, Seki T, et al. Antibacterial potential of garlic-derived allicin and its cancellation by sulfhydryl compounds. Biosci Biotechnol Biochem. 2009;73:1948-55. https://doi.org/10.1271/bbb.90096Search in Google Scholar

Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ. Allicin: Chemistry and biological properties. Molecules. 2014;19(8):12591-618. https://doi.org/10.3390/molecules190812591 PMid:25153873Search in Google Scholar

Barton D, Hesse RH, O’Sullivan A, Pechet M. A new procedure for the conversion of thiols into reactive sulfenylating agents. J Organ Chem. 1991;56:6697-702.Search in Google Scholar

Sheppard JG, McAleer JP, Saralkar P, Geldenhuys WJ, Long TE. Allicin-inspired pyridyl disulfides as antimicrobial agents for multidrug-resistant Staphylococcus aureus. Eur J Med Chem. 2018;143:1185-95. https://doi.org/10.1016/j.ejmech.2017.10.018 PMid:29126733Search in Google Scholar

Loi VV, Huyen NT, Busche T, Tung QN, Gruhlke MC, Kalinowski J, et al. Staphylococcus aureus responds to allicin by global S-thioallylation - role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med. 2019;139:55-69. https://doi.org/10.1016/j.freeradbiomed.2019.05.018 PMid:31121222Search in Google Scholar

Leng BF, Qiu JZ, Dai XH, Dong J, Wang JF, Luo MJ, et al. Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules. 2011;16:7958-68. https://doi.org/10.3390/molecules16097958 PMid:21921868Search in Google Scholar

Bernardo K, Pakulat N, Fleer S, Schnaith A, Utermöhlen O, Krut O, et al. Subinhibitory concentrations of linezolid reduce Staphylococcus aureus virulence factor expression. Antimicrob Agents Chemother. 2004;48(2):546-55. https://doi.org/10.1128/aac.48.2.546-555.2004 PMid:14742208Search in Google Scholar

Ohlsen K, Ziebuhr W, Koller KP, Hell W, Wichelhaus TA, Hacker J. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother. 1998;42(11):2817-23. https://doi.org/10.1128/AAC.42.11.2817 PMid:9797209Search in Google Scholar

Sharifi-Rad J, Hoseini Alfatemi S, Sharifi Rad M, Iriti M. Antimicrobial synergic effect of allicin and silver nanoparticles on skin infection caused by methicillin-resistant Staphylococcus aureus spp. Ann Med Health Sci Res. 2014;4(6):863-8. https://doi.org/10.4103/2141-9248.144883 PMid:25506477Search in Google Scholar

Pérez-Köhler B, García-Moreno F, Bayon Y, Pascual G, Bellón JM. Inhibition of Staphylococcus aureus adhesion to the surface of a reticular heavyweight polypropylene mesh soaked in a combination of chlorhexidine and allicin: An in vitro study. PLoS One. 2015;10(5):e0126711. https://doi.org/10.1371/journal.pone.0126711 PMid:25962163Search in Google Scholar

Zhai H, Pan J, Pang E, Bai B. Lavage with allicin in combination with vancomycin inhibits biofilm formation by Staphylococcus epidermidis in a rabbit model of prosthetic joint infection. PLoS One. 2014;9(7):e102760. https://doi.org/10.1371/journal.pone.0102760 PMid:25025650Search in Google Scholar

Majumdar S, Krishnatreya G, Gogoi N, Thakur D, Chowdhury D. Carbon-dot-coated alginate beads as a smart stimuli-responsive drug delivery system. ACS Appl Mater Interfaces. 2016;8(50):34179-84. https://doi.org/10.1021/acsami.6b10914 PMid:27998111Search in Google Scholar

Sherry E, Boeck H, Warnke PH. Topical application of a new formulation of eucalyptus oil phytochemical clears methicillin-resistant Staphylococcus aureus infection. Am J Infect Control. 2001;29(5):346. https://doi.org/10.1067/mic.2001.117403 PMid:11584265Search in Google Scholar

Caelli M, Porteous J, Carson CF, Heller R, Riley TV. Tea tree oil as an alternative topical decolonization agent for methicillin-resistant Staphylococcus aureus. J Hosp Infect. 2000;46(3):236-7. https://doi.org/10.1053/jhin.2000.0830 PMid:11073734Search in Google Scholar

Blackwood B, Thompson G, McMullan R, Stevenson M, Riley TV, Alderdice FA, et al. Tea tree oil (5%) body wash versus standard care (Johnson’s Baby Softwash) to prevent colonization with methicillin-resistant Staphylococcus aureus in critically ill adults: A randomized controlled trial. J Antimicrob Chemother. 2013;68(5):1193-9. https://doi.org/10.1093/jac/dks501 PMid:23297395Search in Google Scholar

Lee RL, Leung PH, Wong TK. A randomized controlled trial of topical tea tree preparation for MRSA colonized wounds. Int J Nurs Sci. 2014;1:7-14. https://doi.org/10.1016/j.ijnss.2014.01.001Search in Google Scholar

Dryden MS, Dailly S, Crouch M. A randomized, controlled trial of tea tree topical preparations versus a standard topical regimen for the clearance of MRSA colonization. J Hosp Infect. 2004;56(4):283-6. https://doi.org/10.1016/j.jhin.2004.01.008 PMid:15066738Search in Google Scholar

Edmondson M, Newall N, Carville K, Smith J, Riley TV, Carson CF. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int Wound J. 2011;8(4):375-84. https://doi.org/10.1111/j.1742-481X.2011.00801.x PMid:21564552Search in Google Scholar

Rees L, Weil A. Integrated medicine. BMJ. 2001;322(7279):119-20. https://doi.org/10.1136/bmj.322.7279.119 PMid:11159553Search in Google Scholar

Hardy K, Sunnucks K, Gil H, Shabir S, Trampari E, Hawkey P, et al. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of Staphylococcus aureus. mBio. 2018;9(3):e00894-18. https://doi.org/10.1128/mBio.00894-18 PMid:29844113Search in Google Scholar

Hendry ER, Worthington T, Conway BR, Lambert PA. Antimicrobial efficacy of eucalyptus oil and 1,8-cineole alone and in combination with chlorhexidine digluconate against microorganisms grown in planktonic and biofilm cultures. J Antimicrob Chemother. 2009;64(6):1219-25. https://doi.org/10.1093/jac/dkp362 PMid:19837714Search in Google Scholar

Karpanen TJ, Conway BR, Worthington T, Hilton AC, Elliott TS, Lambert PA. Enhanced chlorhexidine skin penetration with eucalyptus oil. BMC Infect Dis. 2010;10:278. https://doi.org/10.1186/1471-2334-10-278 PMid:20860796Search in Google Scholar

Kwiatkowski P, Łopusiewicz Ł, Kostek M, Drozłowska E, Pruss A, Wojciuk B, et al. The antibacterial activity of lavender essential oil alone and in combination with octenidine dihydrochloride against MRSA strains. Molecules. 2019;25(1):95. https://doi.org/10.3390/molecules25010095 PMid:31888005Search in Google Scholar

Kalemba D, Kunicka A. Antibacterial and antifungal properties of essential oils. Curr Med Chem. 2003;10(10):813-29. https://doi.org/10.2174/0929867033457719 PMid:12678685Search in Google Scholar

El-Kalek HH, Mohamed EA. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Int J Pharm Appl. 2012;3:387-98.Search in Google Scholar

Warnke PH, Lott AJ, Sherry E, Wiltfang J, Podschun R. The ongoing battle against multi-resistant strains: In-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils. J Craniomaxillofac Surg. 2013;41(4):321-6. https://doi.org/10.1016/j.jcms.2012.10.012 PMid:23199627Search in Google Scholar

Costa SS, Viveiros M, Amaral L, Couto I. Multidrug efflux pumps in Staphylococcus aureus: An update. Open Microbiol J. 2013;7:59-71. https://doi.org/10.2174/1874285801307010059 PMid:23569469Search in Google Scholar

Dickson RA, Houghton PJ, Hylands PJ, Gibbons S. Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. &Wlld. and Microglossa pyrifolia Lam. Phytother Res. 2006;20(1):41-5. https://doi.org/10.1002/ptr.1799 PMid:16397919Search in Google Scholar

Tegos G, Stermitz FR, Lomovskaya O, Lewis K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother. 2002;46(10):3133-41. https://doi.org/10.1128/AAC.46.10.3133-3141.2002 PMid:12234835Search in Google Scholar

Morel C, Stermitz FR, Tegos G, Lewis K. Isoflavones as potentiators of antibacterial activity. J Agric Food Chem. 2003;51(19):5677-9. https://doi.org/10.1021/jf0302714 PMid:12952418Search in Google Scholar

Marquez B, Neuville L, Moreau NJ, Genet JP, dos Santos AF, Caño de Andrade MC, et al. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66(15):1804-11. https://doi.org/10.1016/j.phytochem.2005.06.008 PMid:16051285Search in Google Scholar

Pereda-Miranda R, Kaatz GW, Gibbons S. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus. J Nat Prod. 2006;69(3):406-9. https://doi.org/10.1021/np050227d PMid:16562846Search in Google Scholar

Rosato A, Vitali C, De Laurentis N, Armenise D, Antonietta Milillo M. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine. 2007;14(11):727-32. https://doi.org/10.1016/j.phymed.2007.01.005 PMid:17303397Search in Google Scholar

Coutinho HD, Falcão-Silva VS, Siqueira-Júnior JP, Costa JG. Use of aromatherapy associated with antibiotictherapy: Modulation of the antibiotic activity by the essential oil of Zanthoxylum articulatum using gaseous contact. J Essential Oil Bearing Plants. 2010;13:670-5.Search in Google Scholar

Cirino IC, Menezes-Silva SM, Silva HT, de Souza EL, Siqueira-Júnior JP. The Essential oil from Origanum vulgare l. and its individual constituents carvacrol and thymol enhance the effect of tetracycline against Staphylococcus aureus. Chemotherapy. 2014;60(5-6):290-3. https://doi.org/10.1159/000381175 PMid:25999020Search in Google Scholar

Chovanová R, Mezovská J, Vaverková Š, Mikulášová M. The inhibition the Tet(K) efflux pump of tetracycline resistant Staphylococcus epidermidis by essential oils from three Salvia species. Lett Appl Microbiol. 2015;61(1):58-62. https://doi.org/10.1111/lam.12424 PMid:25846244Search in Google Scholar

Medeiros Barreto H, Cerqueira Fontinele F, Pereira de Oliveira A, Arcanjo DD, Cavalcanti Dos Santos BH, de Abreu AP, et al. Phytochemical prospection and modulation of antibiotic activity in vitro by Lippia origanoides H.B.K. in methicillin resistant Staphylococcus aureus. Biomed Res Int. 2014;2014:305610. https://doi.org/10.1155/2014/305610 PMid:24683545Search in Google Scholar

Sung WS, Lee DG. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2008;31(8):1614-7. https://doi.org/10.1248/bpb.31.1614 PMid:18670099Search in Google Scholar

Wang CM, Chen HT, Wu ZY, Jhan YL, Shyu CL, Chou CH. Antibacterial and synergistic activity of pentacyclic triterpenoids isolated from Alstonia scholaris. Molecules. 2016;21(2):139. https://doi.org/10.3390/molecules21020139 PMid:26821000Search in Google Scholar

Basri DF, Sandra V. Synergistic interaction of methanol extract from Canarium odontophyllum Miq. leaf in combination with oxacillin against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Int J Microbiol. 2016;2016:5249534. https://doi.org/10.1155/2016/5249534 PMid:27006659Search in Google Scholar

Teethaisong Y, Autarkool N, Sirichaiwetchakoon K, Krubphachaya P, Kupittayanant S, Eumkeb G. Synergistic activity and mechanism of action of Stephania suberosa Forman extract and ampicillin combination against ampicillin-resistant Staphylococcus aureus. J Biomed Sci. 2014;21(1):90. https://doi.org/10.1186/s12929-014-0090-2 PMid:25208614Search in Google Scholar

Wang J, Guo J, Wu S, Feng H, Sun S, Pan J, et al. Synergistic effects of nanosecond pulsed electric fields combined with low concentration of gemcitabine on human oral squamous cell carcinoma in vitro. PLoS One. 2012;7(8):e43213. https://doi.org/10.1371/journal.pone.0043213 PMid:22927951Search in Google Scholar

Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015;15:178. https://doi.org/10.1186/s12906-015-0699-z PMid:26060128Search in Google Scholar

Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Reversal of ampicillin resistance in MRSA via inhibition of penicillin-binding protein 2a by Acalypha wilkesiana. Biomed Res Int. 2014;2014:965348. https://doi.org/10.1155/2014/965348 PMid:25101303Search in Google Scholar

Santiago C, Lim KH, Loh HS, Ting KN. Prevention of cell-surface attachment and reduction of penicillin-binding protein 2a (PBP2a) level in methicillin-resistant Staphylococcus aureus biofilms by Acalypha wilkesiana. BMC Complement Altern Med. 2015;15:79. https://doi.org/10.1186/s12906-015-0615-6 PMid:25880167Search in Google Scholar

Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, et al. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med (Maywood). 2017;242(7):731-43. https://doi.org/10.1177/1535370216689828 PMid:28118725Search in Google Scholar

Yurchyshyn O, Rusko H, Kutsyk R. Synergistic effects of ethanol medicinal plant extracts with erythromycin against skin strains of staphylococci with inducible phenotype of MLS-resistance. Ann Mechnikovs Inst. 2017;2017(3):71-9.Search in Google Scholar

Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol. 2000;52(3):361-6. https://doi.org/10.1211/0022357001773922 PMid:10757427Search in Google Scholar

Aqil F, Khan MS, Owais M, Ahmad I. Effect of certain bioactive plant extracts on clinical isolates of beta-lactamase producing methicillin resistant Staphylococcus aureus. J Basic Microbiol. 2005;45(2):106-14. https://doi.org/10.1002/jobm.200410355 PMid:15812867Search in Google Scholar

Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol. 2008;46(3):283-8. https://doi.org/10.1007/s12275-008-0012-7 PMid:18604497Search in Google Scholar

Cushnie TP, Lamb AJ. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine. 2006;13(3):187-91. https://doi.org/10.1016/j.phymed.2004.07.003 PMid:16428027Search in Google Scholar

Frimodt-Møller N, Frølund Thomsen V. Interaction between beta-lactam antibiotics and gentamicin against Streptococcus pneumoniae in vitro and in vivo. Acta Pathol Microbiol Immunol Scand B. 1987;95(5):269-75. https://doi.org/10.1111/j.1699-0463.1987.tb03124.x PMid:3673584Search in Google Scholar

Tawfiq UA, Yusha’u M, Bashir M, Adamu S, Umar PH. Synergistic antibacterial effect of stem bark extracts of Faidherbia albida and Psidium guajava against methicillin resistant Staphylococcus aureus. Bayero J Pure Appl Sci. 2017;10:112-5.Search in Google Scholar

Adnan SN, Ibrahim N, Yaacob WA. Disruption of methicillin-resistant Staphylococcus aureus protein synthesis by tannins. Germs. 2017;7(4):186-92. https://doi.org/10.18683/germs.2017.1125 PMid:29264356Search in Google Scholar

Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of polyphenols and alkaloids in Middle Eastern plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911 PMid:31156565Search in Google Scholar

Yarnell E, Abascal K. Herbal support for methicillin-resistant Staphylococcus aureus infections. Alternat Complement Ther. 2009;15:189-95. https://doi.org/10.1089/act.2009.15402Search in Google Scholar

Wang YF, Que HF, Wang YJ, Cui XJ. Chinese herbal medicines for treating skin and soft-tissue infections. Cochrane Database Syst Rev. 2014;2014(7):CD010619. https://doi.org/10.1002/14651858.CD010619.pub2 PMid:25061914Search in Google Scholar

Fallarero A, Hanski L, Vuorela P. How to translate a bioassay into a screening assay for natural products: General considerations and implementation of antimicrobial screens. Planta Med. 2014;80(14):1182-99. https://doi.org/10.1055/s-0034-1383061 PMid:25221978Search in Google Scholar

Hayes AJ, Markovic B. Toxicity of Australian essential oil Backhousia citriodora (Lemon myrtle). Part 1. Antimicrobial activity and in vitro cytotoxicity. Food Chem Toxicol. 2002;40(4):535-43. https://doi.org/10.1016/s0278-6915(01)00103-x PMid:11893412Search in Google Scholar

Hon KL, Ip M, Wong CK, Chan BCL, Leung PC, Leung TF. In vitro antimicrobial effects of a novel Pentaherbs concoction for atopic dermatitis. J Dermatolog Treat. 2018;29(3):235-7. https://doi.org/10.1080/09546634.2017.1395804 PMid:29098912Search in Google Scholar

Weckesser S, Engel K, Simon-Haarhaus B, Wittmer A, Pelz K, Schempp CM. Screening of plant extracts for antimicrobial activity against bacteria and yeasts with dermatological relevance. Phytomedicine. 2007;14(7-8):508-16. https://doi.org/10.1016/j.phymed.2006.12.013 PMid:17291738Search in Google Scholar

Tohidpour A, Sattari M, Omidbaigi R, Yadegar A, Nazemi J. Antibacterial effect of essential oils from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine. 2010;17(2):142-5. https://doi.org/10.1016/j.phymed.2009.05.007 PMid:19576738Search in Google Scholar

Nelson RR. In-vitro activities of five plant essential oils against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. J Antimicrob Chemother. 1997;40(2):305-6. https://doi.org/10.1093/jac/40.2.305 PMid:9302003Search in Google Scholar

Hamoud R, Sporer F, Reichling J, Wink M. Antimicrobial activity of a traditionally used complex essential oil distillate (Olbas((R)) Tropfen) in comparison to its individual essential oil ingredients. Phytomedicine. 2012;19:969-76. https://doi.org/10.1016/j.phymed.2012.05.014Search in Google Scholar

Christoph F, Kaulfers PM, Stahl-Biskup E. A comparative study of the in vitro antimicrobial activity of tea tree oils s.l. with special reference to the activity of beta-triketones. Planta Med. 2000;66(6):556-60. https://doi.org/10.1055/s-2000-8604 PMid:10985085Search in Google Scholar

de Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity of Lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid Based Complement Alternat Med. 2013;2013:852049. https://doi.org/10.1155/2013/852049 PMid:23737850Search in Google Scholar

Kirmizibekmez H, Demirci B, Yeşilada E, Başer KH, Demirci F. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey. Nat Prod Commun. 2009;4(7):1001-6.Search in Google Scholar

Barbosa LN, Probst IS, Andrade BF, Alves FC, Albano M, da Cunha Mde L, et al. In vitro antibacterial and chemical properties of essential oils including native plants from Brazil against pathogenic and resistant bacteria. J Oleo Sci. 2015;64:289-98. https://doi.org/10.5650/jos.ess14209Search in Google Scholar

LaPlante KL. In vitro activity of lysostaphin, mupirocin, and tea tree oil against clinical methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis. 2007;57(4):413-8. https://doi.org/10.1016/j.diagmicrobio.2006.09.007 PMid:17141452Search in Google Scholar

McMahon MA, Tunney MM, Moore JE, Blair IS, Gilpin DF, McDowell DA. Changes in antibiotic susceptibility in staphylococci habituated to sub-lethal concentrations of tea tree oil (Melaleuca alternifolia). Lett Appl Microbiol. 2008;47(4):263-8. https://doi.org/10.1111/j.1472-765X.2008.02420.x PMid:18778374Search in Google Scholar

Carson CF, Hammer KA, Riley TV. Broth micro-dilution method for determining the susceptibility of Escherichia coli and Staphylococcus aureus to the essential oil of Melaleuca alternifolia (tea tree oil). Microbios. 1995;82(332):181-5.Search in Google Scholar

Jiang Y, Wu N, Fu YJ, Wang W, Luo M, Zhao CJ, et al. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ Toxicol Pharmacol. 2011;32:63-8. https://doi.org/10.1016/j.etap.2011.03.011Search in Google Scholar

Chen J, Tang C, Zhang R, Ye S, Zhao Z, Huang Y, et al. Metabolomics analysis to evaluate the antibacterial activity of the essential oil from the leaves of Cinnamomum camphora (Linn.) Presl. J Ethnopharmacol. 2020;253:112652. https://doi.org/10.1016/j.jep.2020.112652 PMid:32035880Search in Google Scholar

Jaradat N, Al-Maharik N. Fingerprinting, antimicrobial, antioxidant, anticancer, cyclooxygenase and metabolic enzymes inhibitory characteristic evaluations of Stachys viticina Boiss. Essential oil. Molecules. 2019;24(21):3880. https://doi.org/10.3390/molecules24213880 PMid:31661884Search in Google Scholar

Ramírez-Rueda RY, Marinho J, Salvador MJ. Bioguided identification of antimicrobial compounds from Chrysopogon zizaniodes (L.) Roberty root essential oil. Future Microbiol. 2019;14:1179-89. https://doi.org/10.2217/fmb-2019-0167 PMid:31625440Search in Google Scholar

Sakagami Y, Iinuma M, Piyasena KG, Dharmaratne HR. Antibacterial activity of alpha-mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine. 2005;12(3):203-8. https://doi.org/10.1016/j.phymed.2003.09.012 PMid:15830842Search in Google Scholar

Zuo GY, Li Y, Wang T, Han J, Wang GC, Zhang YL, et al. Synergistic antibacterial and antibiotic effects of bisbenzylisoquinoline alkaloids on clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules. 2011;16(12):9819-26. https://doi.org/10.3390/molecules16129819 PMid:22117171Search in Google Scholar

Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001;45:3198-201. https://doi.org/10.1128/AAC.45.11.3198-3201.2001Search in Google Scholar

Shiota S, Shimizu M, Sugiyama J, Morita Y, Mizushima T, Tsuchiya T. Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol. 2004;48(1):67-73. https://doi.org/10.1111/j.1348-0421.2004.tb03489.x PMid:14734860Search in Google Scholar

Abreu AC, Coqueiro A, Sultan AR, Lemmens N, Kim HK, Verpoorte R, et al. Looking to nature for a new concept in antimicrobial treatments: Isoflavonoids from Cytisus striatus as antibiotic adjuvants against MRSA. Sci Rep. 2017;7(1):3777. https://doi.org/10.1038/s41598-017-03716-7 PMid:28630440Search in Google Scholar

Smith E, Williamson E, Zloh M, Gibbons S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother Res. 2005;19(6):538-42. https://doi.org/10.1002/ptr.1711 PMid:16114093Search in Google Scholar

Braga LC, Leite AA, Xavier KG, Takahashi JA, Bemquerer MP, Chartone-Souza E, et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus. Can J Microbiol. 2005;51(7):541-7. https://doi.org/10.1139/w05-022 PMid:16175202Search in Google Scholar

Sakagami Y, Mimura M, Kajimura K, Yokoyama H, Linuma M, Tanaka T, et al. Anti-MRSA activity of sophoraflavanone G and synergism with other antibacterial agents. Lett Appl Microbiol. 1998;27(2):98-100. https://doi.org/10.1046/j.1472-765x.1998.00386.x PMid:9750330Search in Google Scholar

eISSN:
1857-9655
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine