1. bookVolume 118 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Open Access

Verification of the cylindrical tank shell stability using the stress design and the MNA-LBA procedure

Published Online: 02 Dec 2021
Volume & Issue: Volume 118 (2021) - Issue 1 (January 2021)
Page range: -
Received: 02 Nov 2021
Accepted: 26 Nov 2021
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

The article presents the course and results of the procedure for verifying the stability of the cylindrical shell of an oil tank with a floating roof, under wind load. Two dimensioning methods recommended by standard PN-EN 1993-1-6 were used, i.e. dimensioning based on the stress state and the MNA-LBA procedure. The method of determining the critical buckling resistance ratio from the linear bifurcation analysis (LBA) and the plastic reference resistance ratio from the physically nonlinear analysis (MNA) has been presented. Comparison of the results obtained with the use of the indicated design methods revealed significant discrepancies in the stress intensity levels of the analysed shell. When using the stress-based dimensioning method, it was shown that the buckling strength was exceeded by 33%, while the results of the MNA-LBA procedure indicated a 33% reserve of the capacity of the analysed system.

Keywords

Bathe, H.J. (1982). Finite element procedures in engineering Analysis. New Jersey: Prentice-Hall. Search in Google Scholar

Chen, L., Rotter, J.M. (2012). Buckling of anchored cylindrical shells of uniform thickness under wind load. Engineering Structures, 41, 199–208.10.1016/j.engstruct.2012.03.046 Search in Google Scholar

Chrysanthos, M., Georgios, A.B., Konstantinos, D.T. (2015). Numerical evaluation on the shell buckling of empty thin-walled steel tanks under wind load according to current American and European design codes. Thin-Walled Structures, 95, 152–160.10.1016/j.tws.2015.07.007 Search in Google Scholar

Doerich, C., Rotter, J.M. (2011). Accurate determination of plastic collapse loads from finite element analyses. Journal of Pressure Vessel Technology, 133.10.1115/1.4002770 Search in Google Scholar

ECCS TC8 TWG 8.4 (2008). Shells – Buckling of steel shells – European design recommendations – 5th edition. Portugal: European Convention for Constructional Steelwork. Search in Google Scholar

Godoy, L.A. (2016). Buckling of vertical oil storage steel tanks: review of static buckling studies. Thin-Walled Structures, 103, 1–21.10.1016/j.tws.2016.01.026 Search in Google Scholar

Holst, J.M.F.G., Rotter, J.M., Münch, M. (2007). Failure criteria for shells on local brackets. In H.R. Drew, S. Pellegrino (Eds.), New Approaches to Structural Mechanics, Shells and Biological Structures (pp. 315–328). London: Kluwer Academic Publishers. Search in Google Scholar

Iwicki, P., Tejchman, J., Chróścielewski, J. (2014). Dynamic FE simulations of buckling process in thin-walled cylindrical metal silos. Thin-Walled Structures, 84, 344–359.10.1016/j.tws.2014.07.011 Search in Google Scholar

Król, M. (2021). Weryfikacja stateczności płaszcza zbiornika na ropę naftową z wykorzystaniem podejścia naprężeniowego oraz procedury wymiarowania MNA-LBA (master thesis). Politechnika Śląska (manuscript). Search in Google Scholar

PN-EN 1990 (2004). Eurokod: Podstawy projektowania konstrukcji. Warszawa: PKN. Search in Google Scholar

PN-EN 1993-1-1. (2006). Eurokod 3: Projektowanie konstrukcji stalowych – Część 1–1: Reguły ogólne i reguły dla budynków. Warszawa: PKN. Search in Google Scholar

PN-EN 1993-1-6. (2009). Eurokod 3: Projektowanie konstrukcji stalowych – Część 1–6: Wytrzymałość i stateczność konstrukcji powłokowych. Warszawa: PKN. Search in Google Scholar

PN-EN 1993-4-1. (2009). Eurokod 3: Projektowanie konstrukcji stalowych – Część 4–1: Silosy. Warszawa: PKN. Search in Google Scholar

PN-EN 14015. (2010). Specyfikacja dotycząca projektowania i wytwarzania na miejscu zbiorników pionowych o przekroju kołowym, z dnem płaskim, naziemnych, stalowych spawanych, na ciecze o temperaturze otoczenia i wyższej. Warszawa: PKN. Search in Google Scholar

Rotter, J.M. (2011). Shell buckling design and assessment and the LBA-MNA methodology. Stahlbau, 80(11), 791–803.10.1002/stab.201101491 Search in Google Scholar

Słowiński, K., Piekarczyk, M. (2019). FEM determination of the plastic limit load for cylindrical shells. Technical Transactions, 12, 151–162.10.4467/2353737XCT.19.128.11453 Search in Google Scholar

Supernak, E., Ziółko, J. (2013). Podciśnienie w zbiornikach – Wnioski ze zdarzeń w ostatnich latach. In XXVI Konferencja naukowo-techniczna Awarie Budowlane (pp. 589–598). Szczecin. Search in Google Scholar

Timoshenko, S.P., Gere, J.M. (1963). Teoria stateczności sprężystej. Warszawa: Arkady. Search in Google Scholar

Uematsu, Y., Yamaguchi, T., Yasunaga, J. (2018). Effects of wind girders on the buckling of open-topped storage tanks under quasi-static wind loading. Thin-Walled Structures, 124, 1–12.10.1016/j.tws.2017.11.044 Search in Google Scholar

Zhao, Y., Lin, Y. (2014). Buckling of cylindrical open-topped steel tanks under wind load. Thin-Walled Structures, 79, 83–94.10.1016/j.tws.2014.02.010 Search in Google Scholar

Żyburtowicz, M. (1966). Album rysunków konstrukcji stalowych. Warszawa: Arkady. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo