Open Access

Humic substances and significance of their application – a review


Cite

Anielak, A. (2019). Kwasy humusowe. Ekstrakcja, analiza i znaczenie w środowisku oraz metody ich usuwania. Przemysł Chemiczny, 1580–1586. http://doi.org/10.15199/62.2019.10.10 Search in Google Scholar

Anjum, S.A., Wang, L., Farooq, M., Xue, L., Ali, S. (2011). Fulvic acid application improves the maize performance under well-watered and drought conditions. Journal of Agronomy and Crop Science, 409–417. http://doi.org/10.1111/j.1439-037X.2011.00483.x10.1111/j.1439-037X.2011.00483.x Search in Google Scholar

Anwer, M., Ahmed, M., Ansari, M., Khan, T. (2013). Inclusion complex of solid state aspirin with fulvic acid: dissolution, permeability, stability and preliminary pharmacological studies. Journal of Biological Sciences, 302–312. http://doi.org/10.3923/jbs.2013.302.31210.3923/jbs.2013.302.312 Search in Google Scholar

Bi, D., Yuan, G., Wei, J., Xiao, L., Feng, L., Meng, F., Wang, J. (2019). A Soluble Humic Substance for the Simultaneous Removal of Cadmium and Arsenic from Contaminated Soils. International Journal of Environmental Research and Public Health. http://doi.org/10.3390/ijerph1624499910.3390/ijerph16244999 Search in Google Scholar

Brunetti, G., Sensesi, N., Plaza, C. (2008). Organic matter humification in olive oil mill wastewater by abiotic catalysis with manganese(IV) oxide. Bioresource Technology, 8528–8531. http://doi.org/10.1016/j.biortech.2008.02.04710.1016/j.biortech.2008.02.047 Search in Google Scholar

Chefetz, B., Hatcher, P.G., Hadar, Y., Chen, Y. (1996). Chemical and biological characterization of organic matter during composting of municipal solid waste. Journal of Environmental Quality, 776–785. http://doi.org/10.2134/jeq1996.00472425002500040018x10.2134/jeq1996.00472425002500040018x Search in Google Scholar

Chianese, S., Fenti, A., Iovino, P., Musmarra, D., Salvestrini, S. (2020). Sorption of Organic Pollutants by Humic Acids: A Review. Molecules. http://doi.org/10.3390/molecules2504091810.3390/molecules25040918 Search in Google Scholar

Damian, G.E., Micle, V., Sur, I.M. (2019). Mobilization of Cu and Pb from multi-metal contaminated soils by dissolved humic substances extracted from leonardite and factors affecting the process. Journal of Soils and Sediments, 2869–2881. http://doi.org/10.1007/s11368-019-02291-w10.1007/s11368-019-02291-w Search in Google Scholar

Dawood, M.G., Abdel-Baky, Y.R., El-Awadi, M.E., Bakhoum, G.S. (2019). Enhancement quality and quantity of faba bean plants grown under sandy soil conditions by nicotinamide and/or humic acid application. Bulletin of the National Research. http://doi.org/10.1186/s42269-019-0067-010.1186/s42269-019-0067-0 Search in Google Scholar

Dou, S., Shan, J., Song, X., Cao, R., Wu, M., Li, C., Guan, S. (2020). Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, 159–167. http://doi.org/10.1016/S1002-0160(20)60001-710.1016/S1002-0160(20)60001-7 Search in Google Scholar

Gao, X., Tan, W., Zhao, Y., Wu, J., Sun, Q., Qi, H., Wei, Z. (2019). Diversity in the Mechanisms of Humin Formation during Composting with Different Materials. Environmental Science & Technology, 3653–3662. http://doi.org/10.1021/acs.est.8b0640110.1021/acs.est.8b0640130821974 Search in Google Scholar

Gong, G., Yuan, X., Zhang, Y., Li, Y., Liu, W., Wang, M., Zhao, Y., Xu, L. (2020). Characterization of coal-based fulvic acid and the construction of a fulvic acid molecular model. The Royal Society of Chemistry. http://doi.org/10.1039/c9ra09907g10.1039/C9RA09907G904941835498324 Search in Google Scholar

Hassan, M.K., McInroy, J.A., Kloepper, J.W. (2019). The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture. http://doi.org/10.3390/agriculture907014210.3390/agriculture9070142 Search in Google Scholar

Huculak-Mączka, M., Braun-Giwerska, D., Nieweś, D., Mulica, M., Hoffman, J., Hoffman, K. (2018). Torf i węgiel brunatny jako surowce do otrzymania kwasów humusowych. Proceedings of ECOpole, 499–505. http://doi.org/10.2429/proc.2018.12(2)049 Search in Google Scholar

Huculak-Mączka, M., Hoffman, J., Hoffman, K. (2018). Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. Journal of Soils and Sediments, 2868–2880. http://doi.org/10.1007/s11368-017-1907-x10.1007/s11368-017-1907-x Search in Google Scholar

International Humic Substances Society. Retrieved from: http://humic-substances.org/what-are-humic-substances-2/ (access: 10/10/2020). Search in Google Scholar

Kala, K.J., Prashob, P.K.J., Chandramohanakumar, N. (2019). Humic substances as a potent biomaterials for therapeutic and drug delivery system – review. International Journal of Applied Pharmaceutics. http://doi.org/10.22159/ijap.2019v11i3.3142110.22159/ijap.2019v11i3.31421 Search in Google Scholar

Khan, M.Z., Ahmed, H., Ahmed, S., Khan, A., Khan, R.U., Hussain, F., Hayat, A., Sarwar, S. (2019). Formulation of humic substances coated fertilizer and its use to enhance K fertilizer use efficiency for tomato under greenhouse conditions. Journal of Plant Nutrition, 626–633. http://doi.org/10.1080/01904167.2019.156846210.1080/01904167.2019.1568462 Search in Google Scholar

Khan, R., Jain, P., Aqil, M., Agarwal, S.P., Mirza, M.A., Iqbal, Z. (2020). Pharmacokinetic evaluation of fulvic acid-ketoconazole complexes: A validation and line extension study. Journal of Drug Delivery Science and Technology. http://doi.org/10.1016/j.jddst.2019.10146910.1016/j.jddst.2019.101469 Search in Google Scholar

Lipczynska-Kochany, E. (2018). Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: A review. Chemosphere, 420–437. http://doi.org/10.1016/j.chemosphere.2018.03.10410.1016/j.chemosphere.2018.03.10429579677 Search in Google Scholar

Negm, A., Abu-Hashim, M. (2019). Sustainability of Agricultural Environment in Egypt: Part II. The Handbook of Environmental Chemistry, Merwad, A.M.A. Using Humic Substances and Foliar Spray with Moringa Leaf Extract to Alleviate Salinity Stress on Wheat. Springer, Cham, 265–286. http://doi.org/10.1007/698_2018_29810.1007/698_2018_298 Search in Google Scholar

Olk, D.C., Bloom, P.R., Perdue, E.M., McKnight, D.M., Chen, Y., Farenhorst, A., Senesi, N., Chin, Y.-P., Schmitt-Kopplin, P., Hertkorn, N., Harir, M. (2019). Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters. Journal of Environmental Quality, 217–232. http://doi.org/10.2134/jeq2019.02.004110.2134/jeq2019.02.004130951132 Search in Google Scholar

Qian, S., Ding, W., Li, Y., Liu, G., Sun, J., Ding, Q. (2015). Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. Chemical Speciation & Bioavailability, 156–161. http://doi.org/10.1080/09542299.2015.111836110.1080/09542299.2015.1118361 Search in Google Scholar

Rombel-Bryzek, A., Pisarek, I. (2017). Wpływ kwasów huminowych na aktywność metaboliczną buraka cukrowego w warunkach suszy. Proceedings of ECOpole, 279–286. http://doi.org/10.2429/proc.2017.11(1)030 Search in Google Scholar

Shahabivand, S., Padash, A., Aghaee, A., Nasiri, Y., Rezaei, P.F. (2018). Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Iranian Journal of Plant Physiology, 2333–2344. http://doi.org/10.22034/ijpp.2018.539109 Search in Google Scholar

Sharma, A., Antha, R. (2016). Humic Substances in Aquatic Ecosystems: A Review. International Journal of Innovative Research in Science, Engineering and Technology, 18462–18470. http://doi.org/10.15680/IJIRSET.2016.0510051 Search in Google Scholar

Veryho, N., Ziółkowski, M., Czarniecki, D., Kłopocka, M., Budzyński, J., Liebert, A., Szot, K., Chojnowski, J., Ponikowska, I. (2019). Wpływ kuracji pitnej wodą humusową na obrazowe i laboratoryjne parametry funkcji wątroby u pacjentów uzależnionych od alkoholu – wyniki wstępne. Hygeia Public Health, 48–55. Search in Google Scholar

Weber, J. (2020). Humic Substances and their Role in the Environment. EC Agriculture, 03–08. Search in Google Scholar

Weber, J. Formation of humic substances. Retrieved from: http://karnet.up.wroc.pl/~weber/powstaw1.htm (access: 18/05/2020). Search in Google Scholar

Yang, F., Antonietti, M. (2020). The sleeping giant: A polymer View on humic matter in synthesis and applications. Progress in Polymer Science. http://doi.org/10.1016/j.progpolymsci.2019.10118210.1016/j.progpolymsci.2019.101182 Search in Google Scholar

Yildiztekin, M., Tuna, A.L., Kaya, C. (2018). Physiological effects of the brown seaweed (Ascophyllum nodosum) and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biologica Hungarica, 325–335. http://doi.org/10.1556/018.68.2018.3.810.1556/018.68.2018.3.830257582 Search in Google Scholar

Zashikhina, A.V., Sviridovaa, M.L. (2019). Gold Leaching with Humic Substances. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 151–156. http://doi.org/10.1134/S106273911904600210.1134/S1062739119046002 Search in Google Scholar

Zhou, L., Monreal, C.M., Xu, S., Mclaughlin, N.B., Zhang, H., Hao, G., Liu, J. (2019). Effect of bentonite-humic acid application on the improvement of soil structure and maize yield in a sandy soil of a semi-arid region. Geoderma, 269–280. http://doi.org/10.1016/j.geoderma.2018.12.01410.1016/j.geoderma.2018.12.014 Search in Google Scholar

Zingaretti, D., Lieto, A., Lombardi, F., Gavasci, R. (2020). Humic Substances Extracted from a Bio-stabilized Waste Applying Different Operating Conditions. Waste Biomass Valor. http://doi.org/10.1007/s12649-020-01085-310.1007/s12649-020-01085-3 Search in Google Scholar