1. bookVolume 117 (2020): Issue 1 (January 2020)
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Open Access

Characteristics of the structure of natural zeolites and their potential application in catalysis and adsorption processes

Published Online: 28 Dec 2020
Volume & Issue: Volume 117 (2020) - Issue 1 (January 2020)
Page range: -
Received: 15 May 2020
Accepted: 21 Dec 2020
Journal Details
License
Format
Journal
eISSN
2353-737X
First Published
20 May 2020
Publication timeframe
1 time per year
Languages
English
Abstract

Authors present a short review of selected natural-origin zeolite materials. This article discusses the structure, classification and ability to modify natural zeolites, along with examples of their potential applications as adsorbents or catalysts.

Keywords

Ackley, M.W., Yang, R.T. (1991). Diffusion in ion-exchanged clinoptilolites, AIChE Journal, 11, 1645–1656. https://doi.org/10.1002/aic.69037110710.1002/aic.690371107Search in Google Scholar

Armbruster, T. (2001). Clinoptilolite-heulandite: applications and basic research. Studies in Surface Science and Catalysis, 135, 13–27. https://doi.org/10.1016/S0167-2991(01)81183-610.1016/S0167-2991(01)81183-6Search in Google Scholar

Armor, J.N. (2011). A history of industrial catalysis, Catalysis Today, 163, 3–9. https://doi.org/10.1016/j.cattod.2009.11.01910.1016/j.cattod.2009.11.019Search in Google Scholar

Atta, A.Y., Jibril, B.Y., Aderemi, B.O., Adefila, S.S. (2012). Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science, 61, 8–13. https://doi.org/10.1016/j.clay.2012.02.01810.1016/j.clay.2012.02.018Search in Google Scholar

Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C., Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials, 235, 78–86. https://doi.org/10.1016/j.micromeso.2016.08.00710.1016/j.micromeso.2016.08.007Search in Google Scholar

Azizi, S.N., Ehsani, Tilami S. (2013). Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization. Journal of Solid State Chemistry, 198, 138–142. https://doi.org/10.1016/j.jssc.2012.10.00110.1016/j.jssc.2012.10.001Search in Google Scholar

Azizi 1, S.N., Ehsani, Tilami S. (2013). Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous and Mesoporous Materials, 167, 89–93. https://doi.org/10.1016/j.micromeso.2012.03.03410.1016/j.micromeso.2012.03.034Search in Google Scholar

Bampaiti, A., Misaelides, P., Noli, F. (2015). Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff, J. Radioanal. Nucl. Chem., 303, 2233. https://doi.org/10.1007/s10967-014-3796-410.1007/s10967-014-3796-4Search in Google Scholar

Bejar A., Chaabene S.B., Jaber M., Lambert J.F., Bergaoui F. (2014). Mnanalcime: synthesis, characterization and application to cyclohexene oxidation. Microporous and Mesoporous Materials, 196, 158–164. https://doi.org/10.1016/j.micromeso.2014.05.00410.1016/j.micromeso.2014.05.004Search in Google Scholar

Čejka, J., Peréz-Pariente, J., Roth, W.J. (2008). Zeolites: From Model Materials to Industrial Catalysts. Transworld Research Network, 357–389.Search in Google Scholar

Chmielewská-Horváthová, E., Konečný, J., Bošan, Z. (1992). Ammonia Removal from Tannery Wastewaters by Selective Ion Exchange on Slovak Clinoptilolite. Acta hydrochim. hydrobiol., 20, 269–272. https://doi.org/10.1016/S0043-1354(02)00571-710.1016/S0043-1354(02)00571-7Search in Google Scholar

Christidis, G.E., Moraetis, D., Keheyanb, E., Akhalbedashvili, L., Kekelidzec N., Gevorkyand R., Yeritsyane H., Sargsyan H. (2003). Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Applied Clay Science, 24, 79–91. https://doi.org/10.1016/S0169-1317(03)00150-910.1016/S0169-1317(03)00150-9Search in Google Scholar

Coombs, D.S., Ellis, A.J., Fyfe, W.S., Taylor, A.M. (1959). The zeoIite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17, 53–107. https://doi.org/10.1016/0016-7037(59)90079-110.1016/0016-7037(59)90079-1Search in Google Scholar

Corma A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216, 298–312. https://doi.org/10.1016/S0021-9517(02)00132-X10.1016/S0021-9517(02)00132-XSearch in Google Scholar

Covarrubias, C., García, R., Arriagada, R., Yánez, J., Garland, M.T. (2006). Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 88, 220–231. https://doi.org/10.1016/j.micromeso.2005.09.00710.1016/j.micromeso.2005.09.007Search in Google Scholar

Cundy, C.S., Cox, P.A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev.,103, 663–701. https://doi.org/10.1021/cr020060i10.1021/cr020060iSearch in Google Scholar

Czekaj, I., Sobuś, N. (2018a). Concepts of modern Technologies of obtaining valuable biomass-derived chemicals. Technical Transactions, 8, 35–58. https://doi.org/10.4467/2353737XCT.18.114.888910.4467/2353737XCT.18.114.8889Search in Google Scholar

Czekaj, I., Sobuś, N. (2018b). Vibrational Structure of Selected Compounds Derived from Biomass: Lignin Dimers, Selected Aldopentoses and Aldohexoses. Journal of Chemistry and Chemical Engineering, 12, 11–19. https://doi.org/10.17265/1934-7375/2018.01.00210.17265/1934-7375/2018.01.002Search in Google Scholar

Czekaj, I., Sobuś, N. (2018c). Nano-design of zeolite-based catalysts for selective conversion of biomass into chemicals, Wydawnictwo PK, Kraków 2018. https://repozytorium.biblos.pk.edu.pl/resources/42981Search in Google Scholar

Ćurković, L., Cerjan-Stefanović, Š., Filipan, T. (1997). Metal ion exchange by natural and modified zeolites. Water Research, 31, 1379–1382. https://doi.org/10.1016/S0043-1354(96)00411-310.1016/S0043-1354(96)00411-3Search in Google Scholar

Dallas Swift, T., Nguyen, H., Erdman, Z., Kruger, J.S., Nikolakis, V., Vlachos, D.G. (2016). Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. Journal of Catalysis, 333, 149–161. https://doi.org/10.1016/j.jcat.2015.10.00910.1016/j.jcat.2015.10.009Search in Google Scholar

Dapsens, P.Y., Mondelli, C., Perez-Ramirez, J. (2015). Design of Lewis-acid centres in zeolitic matrices for the conversion of renewable. Chem. Soc. Rev., 44, 7025–7043. https://doi.org/10.1039/C5CS00028A10.1039/C5CS00028ASearch in Google Scholar

Davis, R.J. (2003). New perspectives on basic zeolites as catalysts and catalyst supports. Journal of Catalysis, 216, 396–405. https://doi.org/10.1016/S0021-9517(02)00034-910.1016/S0021-9517(02)00034-9Search in Google Scholar

Dwyer, F.G., Degnan, T.F. (1993). Shape Selectivity in Catalytic Cracking. Studies in Surface Science and Catalysis, 76, 499–530. https://doi.org/10.1016/S0167-2991(08)63836-710.1016/S0167-2991(08)63836-7Search in Google Scholar

Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., Sels B.F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev., 45, 584-611. https://doi.org/10.1039/C5CS00859J10.1039/C5CS00859JSearch in Google Scholar

Eprikashvili, L., Zautashvili, M., Kordzakhia, T., Pirtskhalava, N., Dzagania, M., Rubashvili, I., Tsitsishvili, V. (2016). Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils. Annals of Agrarian Science, 14, 67–71. https://doi.org/10.1016/j.aasci.2016.05.00410.1016/j.aasci.2016.05.004Search in Google Scholar

Favvas, E.P., Tsanaktsidis, C.G., Sapalidis, A.A., Tzilantonis, G.T., Papageorgiou, S.K., Mitropoulos, A.Ch. (2016). Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous and Mesoporous Materials, 225, 385–391. https://doi.org/10.1016/j.micromeso.2016.01.02110.1016/j.micromeso.2016.01.021Search in Google Scholar

Figueroa-Torres, G.M., Certucha-Barragán, M.T., Acedo-Félix, E., Monge-Amaya, O., Almendariz-Tapia, F.J., Gasca-Estefanía, L.A. (2016). Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite. Journal of the Taiwan Institute of Chemical Engineers, 61, 241–246. https://doi.org/10.1016/j.jtice.2015.12.01810.1016/j.jtice.2015.12.018Search in Google Scholar

Flanigen E.M. (2001). Zeolites and molecular sieves: An historical perspective. Studies in Surface Science and Catalysis, 137, 11–35. https://doi.org/10.1016/S0167-2991(01)80243-310.1016/S0167-2991(01)80243-3Search in Google Scholar

Fukui, K., Arai, K., Kanayama, K., Yoshida, H. (2006). Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Advanced Powder Technol., 17, 369–382. https://doi.org/10.1163/15685520677786616410.1163/156855206777866164Search in Google Scholar

García, J.E., González, M.M., Notario, J.S. (1993). Phenol adsorption on natural phillipsite. Reactive Polymers, 21, 171–176. https://doi.org/10.1016/0923-1137(93)90119-Z10.1016/0923-1137(93)90119-ZSearch in Google Scholar

García Hernández, J.E., Diaz Diaz, R., Notario del Pint, J.S., González Martin, M.M.(1994). NH4+ - Na+ -exchange and NH4+-release studies in natural phillipsite. Applied Clay Science 9/1994, 129–137. https://doi.org/10.1016/0169-1317(94)90032-910.1016/0169-1317(94)90032-9Search in Google Scholar

Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L.Ch., Llewellyn, P., Maurin, G., Lewis, D.W., Binions, R., Autie, M., Ruiz-Salvador, A.R. (2010). Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials, 135, 187–196. https://doi.org/10.1016/j.micromeso.2010.07.00810.1016/j.micromeso.2010.07.008Search in Google Scholar

Garcia-Martinez, J., Li, K. (2015). Mesoporous Zeolites Preparation. Characterization and Applications, Wiley-VCH.Search in Google Scholar

Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C., Rinaldi, R. (2009). New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94, 190–199. https://doi.org/10.2138/am.2009.303210.2138/am.2009.3032Search in Google Scholar

Gatta, G.D., Lotti, P. (2019). Systematics, crystal structures, and occurrences of zeolites. Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications. Micro and Nano Technologies, 1–25. https://doi.org/10.1016/B978-0-12-814617-0.00001-310.1016/B978-0-12-814617-0.00001-3Search in Google Scholar

Ghobarkar, H., Schӓf, O., Massiani, Y., Knauth, P. (2003). The Reconstruction of Natural Zeolites. Springer Science+Business Media Dordrecht 2003.10.1007/978-1-4419-9142-3Search in Google Scholar

Grce, M., Pavelić, K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials, 79, 165–169. https://doi.org/10.1016/j.micromeso.2004.10.03910.1016/j.micromeso.2004.10.039Search in Google Scholar

Grzybowska-Świerkosz, B. (1993). Elementy katalizy heterogenicznej. Warszawa: Wydawnictwo Naukowe PWN.Search in Google Scholar

Gualtieri, A.F., Passaglia, E., Galli, E. (2002). Ion exchange selectivity of phillipsite. Studies in Surface Science and Catalysis, 142, 1705–1712. https://doi.org/10.1016/S0167-2991(02)80343-310.1016/S0167-2991(02)80343-3Search in Google Scholar

Handke, M. (2005). Krystalochemia krzemianów. Kraków: Wydawnictwo AGH.Search in Google Scholar

Harikishore, K. R. D., Vijayaraghavan, K., Kim, J.A., Yeoung-Sang, Y. (2017) Valorisation of post-sorption materials: Opportunities, strategies, and challenges, Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.00210.1016/j.cis.2016.12.002Search in Google Scholar

Hedström, A., (2001). Ion Exchange of Ammonium in Zeolites: A Literature Review. Journal of Environmental Engineering, 127, 673–681. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(673)10.1061/(ASCE)0733-9372(2001)127:8(673)Search in Google Scholar

Hincapie B.O., Garces L.J., Zhang Q., Sacco A., Suib S.L. (2004). Synthesis of mordenite nanocrystals. Microporous and Mesoporous Materials, 67, 19–26. https://doi.org/10.1016/j.micromeso.2003.09.02610.1016/j.micromeso.2003.09.026Search in Google Scholar

Inglezakis V.J., Hadjiandreou, K.J., Loizidou, M.D., Grigoropoulou, H.P. (2001). Pretreatment of natural clinoptilolite in a laboratory-scale ion exchange packed bed, Wat. Res., 9, 2161–2166. https://doi.org/10.1016/S0043-1354(00)00500-510.1016/S0043-1354(00)00500-5Search in Google Scholar

http://iza-structure.org [access: 30.04.2020]Search in Google Scholar

Jha, V.K., Hayashi, S., (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169, 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.05210.1016/j.jhazmat.2009.03.052Search in Google Scholar

Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A., Turan, M. (2007). Basic and Reactive Dye Removal Using Natural and Modified Zeolites. Journal of Chemical and Engineering Data, 52, 2436–2441. https://doi.org/10.1021/je700372610.1021/je7003726Search in Google Scholar

Kesraoui-Ouki, S., Cheeseman, C.R., Perry R. (1994). Natural Zeolite Utilisation in Pollution Control: A Review of Applications to Metals’ Effluents. J. Chem. Tech. Biorechnol., 59, 121–126. https://doi.org/10.1002/jctb.28059020210.1002/jctb.280590202Search in Google Scholar

Kim, D. (2018). Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules, 23, 309, 1-21. https://doi.org/10.3390/molecules2302030910.3390/molecules23020309Search in Google Scholar

Kol’tsova T.N. (2007). Crystal Structures of Zeolites with the General Formula CaAl2Si4O12 · nH2O. Inorganic Materials, 2, 176–184. https://doi.org/10.1134/S002016850706018010.1134/S0020168507060180Search in Google Scholar

Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.00210.1016/j.micromeso.2005.08.002Search in Google Scholar

Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis, WILEY-VCH Verlag GmbH & Co.KGaA, 2010.Search in Google Scholar

Lia Q., Liu D., Song L., Houd X., Wua C., Yan Z. (2018). Efficient hydro-liquefaction of woody biomass over ionic liquid nickel based catalyst. Industrial Crops & Products, 113, 157–166. https://doi.org/10.1016/j.indcrop.2018.01.03310.1016/j.indcrop.2018.01.033Search in Google Scholar

Liebau, F. (1983). Zeolites and clathrasils - two distinct classes of framework silicates, Zeolites, 3, 191-193. https://doi.org/10.1016/0144-2449(83)90003-910.1016/0144-2449(83)90003-9Search in Google Scholar

Mahdi, H.I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W.B., Muraza, O. (2016). Glycerol carbonate production from biodiesel waste over modified natural clinoptilolite. Waste Biomass Valor, 7, 1349–1356. https://doi.org/10.1007/s12649-016-9495-310.1007/s12649-016-9495-3Search in Google Scholar

Majdan, M., Pikus, S., Rzączyńska, Z., Iwan, M., Maryuk, O., Kwiatkowski, R., Skrzypek, H. (2006). Characteristics of chabazite modified by hexadecyltrimethylammonium bromide and of its affinity toward chromates. Journal of Molecular Structure, 791, 53–60. https://doi.org/10.1016/j.molstruc.2005.12.04310.1016/j.molstruc.2005.12.043Search in Google Scholar

Malekian, R., Abedi-Koupai, J., Eslamian, S.S. (2011). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials 185, 970–976. https://doi.org/10.1016/j.jhazmat.2010.09.11410.1016/j.jhazmat.2010.09.114Search in Google Scholar

Marakatti, V.S., Halgeri, A.B. (2015). Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol, RSC Adv., 5, 14286–14293. https://doi.org/10.1039/C4RA16052E10.1039/C4RA16052ESearch in Google Scholar

Masters, A.F., Maschmeyer, T. (2011). Zeolites–From curiosity to cornerstone. Microporous and Mesoporous Materials, 142, 423–438. https://doi.org/10.1016/j.micromeso.2010.12.02610.1016/j.micromeso.2010.12.026Search in Google Scholar

Mess, F., Stoops, G., Van Ranst, E., Paepe, R., Van Overloop, E. (2005). The nature of zeolite occurrences in deposits of the Olduvai Basin, Northern Tanzania. Clays and Clay Minerals, 6, 659–673. http://hdl.handle.net/1854/LU-41285710.1346/CCMN.2005.0530612Search in Google Scholar

Mintova, S., Barrier, N., (2016). Syntheses of Zeolitic Materials Third Revised Edition, Published on behalf of the Synthesis Commission of the International Zeolite Association 2016.Search in Google Scholar

Montagna, G., Bigi, S., Kónya, P., Szakáll, S., Vezzalini, G. (2010). Chabazite-Mg: a new natural zeolite of the chabazite series. American Mineralogist, 95, 939–945. https://doi.org/10.2138/am.2010.344910.2138/am.2010.3449Search in Google Scholar

Mumpton, F.A. (1977). Mineralogy and Geology of Natural Zeolites, Reviews in Mineralogy & Geochemistry, 4, New York.10.1515/9781501508585Search in Google Scholar

Park, M., Choi, J. (1995). Synthesis of phillipsite from fly ash. Clay Science, 9, 219–229. https://doi.org/10.1163/15685520677786616410.1163/156855206777866164Search in Google Scholar

Pavlovic, J., Popova, M., Mihalyi, R.M., Mazaj, M., Mali, G., J. Kovač, J., H. Lazarova, H., Rajic, N. (2019). Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials, 279, 10–18. https://doi.org/10.1016/j.micromeso.2018.12.00910.1016/j.micromeso.2018.12.009Search in Google Scholar

Primo, A., Garcia, H. (2014). Zeolites as catalysts in oil refining. Chem. Soc. Rev., 43, 7548–7561. https://doi.org/10.1039/C3CS60394F10.1039/C3CS60394FSearch in Google Scholar

Ragnarsdóttir K.V. (1993). Dissolution kinetics of heulandite at pH 2-12 and 25°C. Geochimica et Cosmochimica Acta, 57, 2439–2449. https://doi.org/10.1016/0016-7037(93)90408-O10.1016/0016-7037(93)90408-OSearch in Google Scholar

Ramachandran, C.E., Williams, B.A., van Bokhoven, J.A., Miller, J.T. (2005). Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis, 233, 100–108. https://doi.org/10.1016/j.jcat.2005.04.01710.1016/j.jcat.2005.04.017Search in Google Scholar

Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., Gaval’ová, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397–404. https://doi.org/10.1016/j.cossms.2005.04.00410.1016/j.cossms.2005.04.004Search in Google Scholar

Rinaldi, R., Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy Environ. Sci., 2, 610–626. https://doi.org/10.1039/B902668A10.1039/b902668aSearch in Google Scholar

Rujiwatra, A. (2004). A selective preparation of phillipsite and sodalite from perlite. Materials Letters, 58, 2012–2015. https://doi.org/10.1016/j.matlet.2003.12.01510.1016/j.matlet.2003.12.015Search in Google Scholar

Sanhueza, V., Kelm, U., Cid, R. (2002). Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. J. Chem. Technol Biotechnol., 78, 485-488. https://doi.org/10.1002/jctb.80110.1002/jctb.801Search in Google Scholar

Sani, A., Cruciani, G., Gualtieri, A.F. (2002). Dehydration dynamics of Baphillipsite: an in situ synchrotron powder diffraction study. Phys Chem Minerals, 29, 351–361. https://doi.org/10.1007/s00269-002-0247-510.1007/s00269-002-0247-5Search in Google Scholar

Sarioglu M. (2005). Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Separation and Purification Technology, 41, 1–11. https://doi.org/10.1016/j.seppur.2004.03.00810.1016/j.seppur.2004.03.008Search in Google Scholar

Serri, C., de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Mayol, L., Biondi, M. (2016). Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications?, Microporous and Mesoporous Materials, 224, 143–148. https://doi.org/10.1016/j.micromeso.2015.11.02310.1016/j.micromeso.2015.11.023Search in Google Scholar

Smit, B., Maesen, T.L.M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451, 671–678. https://doi.org/10.1038/nature0655210.1038/nature0655218256663Search in Google Scholar

Stephenson, D.J., Fairchild, C.I., Buchan, R.M., Dakins, M.E. (1999). A Fiber Characterization of the Natural Zeolite, Mordenite: A Potential Inhalation Health Hazard, Aerosol Science and Technology, 30, 467–476. https://doi.org/10.1080/02786829930450710.1080/027868299304507Search in Google Scholar

Sun, Z., Barta, K. (2018). Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem. Commun., 54, 7725–7745. https://doi.org/10.1039/C8CC02937G10.1039/C8CC02937GSearch in Google Scholar

Van Meerbeeka, K., Muysa, B., Hermy, M. (2019). Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renewable and Sustainable Energy Reviews, 102, 139–149. https://doi.org/10.1016/j.rser.2018.12.00910.1016/j.rser.2018.12.009Search in Google Scholar

Wanga, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.02910.1016/j.cej.2009.10.029Search in Google Scholar

Watson, G.C., Jensen, N.K., Rufford, T.E., Chan, I., May, E.F. (2012). Volumetric Adsorption Measurements of N2, CO2, CH4, and a CO2 + CH4 Mixture on a Natural Chabazite from (5 to 3000) kPa. J. Chem. Eng. Data, 57, 93–101. https://doi.org/10.1021/je200812y10.1021/je200812ySearch in Google Scholar

Weitkamp, J., Puppe, L. (1999). Catalysis and Zeolites: Fundamentals and Applications. Berlin Heidelberg: Springer-Verlag.10.1007/978-3-662-03764-5Search in Google Scholar

Xiea, Y., Sua, Y., Wanga, P., Zhang, S., Xiong, Y. (2018). In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers-supported Fe-Ni bimetallic catalysts. Fuel Processing Technology, 182, 77–87. https://doi.org/10.1016/j.fuproc.2018.10.01910.1016/j.fuproc.2018.10.019Search in Google Scholar

Xu, R., Pang, W., Yu, J., Huo, Q., Chen, J. (2007). Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons.10.1002/9780470822371Search in Google Scholar

Yakubovich, O.V., Massa, W., Gavrilenko, P.G., Pekov, I.V. (2005). Crystal Structure of Chabazite K. Crystallography Reports, 4, 544–553. https://doi.org/10.1134/1.199672810.1134/1.1996728Search in Google Scholar

Yilmaz, B., Műller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics Catal., 52, 888–895. https://doi.org/10.1007/s11244-009-9226-010.1007/s11244-009-9226-0Search in Google Scholar

Yokomori, Y., Idaka, S. (1998). The crystal structure of analcime. Microporous and Mesoporous Materials, 21, 1998, 365–370. https://doi.org/10.1016/S1387-1811(98)00019-510.1016/S1387-1811(98)00019-5Search in Google Scholar

Zhou, L., Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252–257. https://doi.org/10.1016/j.aquaculture.2014.05.01910.1016/j.aquaculture.2014.05.019Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo