Cite

Bartoszewicz, A. and Lesniewski, P. (2016). New switching and nonswitching type reaching laws for SMC of discrete time systems, IEEE Transactions on Control Systems Technology24(2): 670–677.10.1109/TCST.2015.2440175Search in Google Scholar

Chen, S., Lai, Y.M., Tan, S.C. and Tse, C.K. (2009). Fast response low harmonic distortion control scheme for voltage source inverters, IET Power Electronics2(5): 575–584.10.1049/iet-pel.2008.0149Search in Google Scholar

Chen, X. and Tomizuka, M. (2014). New repetitive control with improved steady-state performance and accelerated transient, IEEE Transactions on Control Systems Technology22(2): 664–675.10.1109/TCST.2013.2253102Search in Google Scholar

Flores, J.V., Da Silva, J.M.G., Pereira, L.F.A. and Sbarbaro, D.G. (2012). Repetitive control design for MIMO systems with saturating actuators, IEEE Transactions on Automatic Control57(1): 192–198.10.1109/TAC.2011.2174829Search in Google Scholar

Francis, B. and Wonham, W. (1975). The internal model principle for linear multivariable regulators, Applied Mathematics and Optimization2(2): 170–194.10.1007/BF01447855Search in Google Scholar

Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics42(2): 117–122.10.1109/41.370376Search in Google Scholar

Grino, R. and Costa-Castello, R. (2005). Digital repetitive plug-in controller for odd-harmonic periodic references and disturbances, Automatica41(1): 153–157.10.1016/j.automatica.2004.08.006Search in Google Scholar

Hillerstrom, G. and Walgama, K. (1996). Repetitive control theory and applications—A survey, IFAC Proceedings Volumes29(1): 1446–1451.10.1016/S1474-6670(17)57870-2Search in Google Scholar

Hornik, T. and Zhong, Q.-C. (2011). A current-control strategy for voltage-source inverters in microgrids based on h and repetitive control, IEEE Transactions on Power Electronics26(3): 943–952.10.1109/TPEL.2010.2089471Search in Google Scholar

Kurniawan, E., Afandi, M.I. and Suryadi, S. (2017). Repetitive control system for tracking and rejection of multiple periodic signals, Proceedings of the 2017 International Conference on Robotics, Automation and Sciences, Melaka, Malaysia, pp. 1–5.Search in Google Scholar

Kurniawan, E., Cao, Z. and Man, Z. (2014). Design of robust repetitive control with time-varying sampling periods, IEEE Transactions on Industrial Electronics61(6): 2834–2841.10.1109/TIE.2013.2276033Search in Google Scholar

Kurniawan, E., Cao, Z., Mitrevska, M. and Man, Z. (2016a). Design of decentralized multi-input multi-output repetitive control systems, International Journal of Automation and Computing Science13(6): 615–623.10.1007/s11633-016-1013-3Search in Google Scholar

Kurniawan, E.,Wardoyo, R. and Gojali, E.A. (2016b). Tracking and robust performance of discrete-time model-based controller, Proceedings of the 2016 International Conference on Computer, Control, Informatics and Its Applications, Jakarta, Indonesia, pp. 28–32.10.1109/IC3INA.2016.7863018Search in Google Scholar

Li, C.X., Gu, G.Y., Yang, M.J. and Zhu, L.M. (2017). High-speed tracking of a nanopositioning stage using modified repetitive control, IEEE Transactions on Automation Science and Engineering14(3): 1467–1477.10.1109/TASE.2015.2428437Search in Google Scholar

Longman, R.W. (2010). On the theory and design of linear repetitive control systems, European Journal of Control16(5): 447–496.10.3166/ejc.16.447-496Search in Google Scholar

Lorenzini, C., Flores, J.V., Pereira, L.F.A. and Pereira, L.A. (2018). Resonant-repetitive controller with phase correction applied to uninterruptible power supplies, Control Engineering Practice77: 118–126.10.1016/j.conengprac.2018.05.005Search in Google Scholar

Lu, Y.S., Wu, B.X. and Lien, S.F. (2012). An improved sliding-mode repetitive learning control scheme using wavelet transform, Asian Journal of Control14(4): 991–1001.10.1002/asjc.433Search in Google Scholar

Ma, H., Li, Y. and Xiong, Z. (2019). Discrete-time sliding-mode control with enhanced power reaching law, IEEE Transactions on Industrial Electronics66(6): 4629–4638.10.1109/TIE.2018.2864712Search in Google Scholar

Mingxuan, S., Youyi, W. and Wang, D. (2005). Variable-structure repetitive control: A discrete-time strategy, IEEE Transactions on Industrial Electronics52(2): 610–616.10.1109/TIE.2005.844227Search in Google Scholar

Mitrevska, M., Cao, Z., Zheng, J., Kurniawan, E. and Man, Z. (2018). Design of a robust discrete-time phase lead repetitive control in frequency domain for a linear actuator with multiple phase uncertainties, International Journal of Control, Automation and Systems16(6): 2609–2620.10.1007/s12555-017-0208-xSearch in Google Scholar

Muramatsu, H. and Katsura, S. (2018). An adaptive periodic-disturbance observer for periodic-disturbance suppression, IEEE Transactions on Industrial Informatics14(10): 4446–4456.10.1109/TII.2018.2804338Search in Google Scholar

Owens, D.H., Li, L.M. and Banks, S.P. (2004). Multi-periodic repetitive control system: A Lyapunov stability analysis for MIMO systems, International Journal of Control77(5): 504–515.10.1080/00207170410001682533Search in Google Scholar

Pérez-Arancibia, N.O., Tsao, T.C. and Gibson, J.S. (2010). A new method for synthesizing multiple-period adaptive-repetitive controllers and its application to the control of hard disk drives, Automatica46(7): 1186–1195.10.1016/j.automatica.2010.04.007Search in Google Scholar

Rashed, M., Klumpner, C. and Asher, G. (2013). Repetitive and resonant control for a single-phase grid-connected hybrid cascaded multilevel converter, IEEE Transactions on Power Electronics28(5): 2224–2234.10.1109/TPEL.2012.2218833Search in Google Scholar

Sakthivel, R., Selvaraj, P. and Kaviarasan, B. (2020). Modified repetitive control design for nonlinear systems with time delay based on T–S fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics: Systems50(2): 646–655.10.1109/TSMC.2017.2756912Search in Google Scholar

Sun, Y., Qiang, H., Mei, X. and Teng, Y. (2018). Modified repetitive learning control with unidirectional control input for uncertain nonlinear systems, Neural Computing and Applications30: 2003–2012.10.1007/s00521-017-2983-ySearch in Google Scholar

Tomei, P. and Verrelli, C.M. (2015). Linear repetitive learning controls for nonlinear systems by Padé approximants, International Journal of Adaptive Control and Signal Processing29(6): 783–804.10.1002/acs.2507Search in Google Scholar

Wang, Y., Wang, R., Xie, X. and Zhang, H. (2018). Observer-based h fuzzy control for modified repetitive control systems, Neurocomputing286: 141–149.10.1016/j.neucom.2018.01.064Search in Google Scholar

Zhang, J., Shi, P., Xia, Y. and Yang, H. (2019). Discrete-time sliding mode control with disturbance rejection, IEEE Transactions on Industrial Electronics66(10): 7967–7975.10.1109/TIE.2018.2879309Search in Google Scholar

Zhou, L., Cheng, L., She, J. and Zhang, Z. (2019). Generalized extended state observer–based repetitive control for systems with mismatched disturbances, International Journal of Robust and Nonlinear Control29(11): 3777–3792.10.1002/rnc.4582Search in Google Scholar

Zhou, L., She, J., Li, C. and Pan, C. (2016). Robust aperiodic-disturbance rejection in an uncertain modified repetitive-control system, International Journal of Applied Mathematics and Computer Science26(2): 285–295, DOI: 10.1515/amcs-2016-0020.10.1515/amcs-2016-0020Search in Google Scholar

Zhou, L., She, J., Zhang, X.M., Cao, Z. and Zhang, Z. (2020). Performance enhancement of repetitive-control systems and application to tracking control of chuck-workpiece systems, IEEE Transactions on Industrial Electronics67(5): 4056–4065.10.1109/TIE.2019.2921272Search in Google Scholar

eISSN:
2083-8492
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics