1. bookVolume 30 (2020): Issue 1 (March 2020)
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English
Open Access

An Information Based Approach to Stochastic Control Problems

Published Online: 03 Apr 2020
Volume & Issue: Volume 30 (2020) - Issue 1 (March 2020)
Page range: 23 - 34
Received: 09 Mar 2019
Accepted: 31 Oct 2019
Journal Details
License
Format
Journal
eISSN
2083-8492
First Published
05 Apr 2007
Publication timeframe
4 times per year
Languages
English

Alpcan, T., Shames, I., Cantoni, M. and Nair, G. (2015). An information-based learning approach to dual control, IEEE Transactions on Neural Networks and Learning Systems26(11): 2736–2748.10.1109/TNNLS.2015.239212225730828Search in Google Scholar

Alspach, D. and Sorenson, H. (1972). Nonlinear Bayesian estimation using Gaussian sum approximations, IEEE Transactions on Automatic Control17(4): 439–448.10.1109/TAC.1972.1100034Search in Google Scholar

Åström, K. and Wittenmark, B. (1995). Adaptive Control, Second Edition, Dover Publications, NewYork, NY.Search in Google Scholar

Banek, T. (2010). Incremental value of information for discrete-time partially observed stochastic systems, Control and Cybernetics39(3): 769–781.Search in Google Scholar

Bania, P. (2017). Simple example of dual control problem with almost analytical solution, Proceedings of the 19th Polish Control Conference, Krakow, Poland, pp. 55–64, DOI: 10.1007/978-3-319-60699-6-7.Search in Google Scholar

Bania, P. (2018). Example for equivalence of dual and information based optimal control, International Journal of Control38(5): 787–803, DOI: 10.1080/00207179.2018.1436775.10.1080/00207179.2018.1436775Search in Google Scholar

Bania, P. (2019). Bayesian input design for linear dynamical model discrimination, Entropy21(4): 1–13, DOI: 10.3390/e21040351.10.3390/e21040351751483533267065Search in Google Scholar

Bania, P. and Baranowski, J. (2016). Field Kalman filter and its approximation, 55th IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 2875–2880, DOI: 10.1109/CDC.2016.7798697.10.1109/CDC.2016.7798697Search in Google Scholar

Bania, P. and Baranowski, J. (2017). Bayesian estimator of a faulty state: Logarithmic odds approach, 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, pp. 253–257, DOI: 10.1109/MMAR.2017.8046834.10.1109/MMAR.2017.8046834Search in Google Scholar

Baranowski, J., Bania, P., Prasad, I. and T., C. (2017). Bayesian fault detection and isolation using field Kalman filter, EURASIP Journal on Advances in Signal Processing79(1), DOI: 10.1186/s13634-017-0514-8.10.1186/s13634-017-0514-8Search in Google Scholar

BarShalom, Y. and Tse, E. (1976). Caution, probing, and the value of information in the control of uncertain systems, Annals of Economic and Social Measurement5(3): 323–337.Search in Google Scholar

Brechtel, S., Gindele, T. and Dillmann, R. (2013). Solving continuous POMDPs: Value iteration with incremental learning of an efficient space representation, Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML’13, Atlanta, GA, USA, Vol. 28, pp. III–370–III–378.Search in Google Scholar

Byrd, R., Hansen, S., Nocedal, J. and Singer, Y. (2016). A stochastic quasi-Newton method for large-scale optimization, SIAM Journal on Optimization26(2): 1008–1031.10.1137/140954362Search in Google Scholar

Cover, T.M. and Thomas, J.A. (2006). Elements of Information Theory, Second Edition, John Wiley & Sons, Inc., Hoboken, NJ.Search in Google Scholar

Delvenne, J.C. and Sandberg, H. (2013). Towards a thermodynamics of control: Entropy, energy and Kalman filtering, 52nd IEEE Conference on Decision and Control, Florence, Italy, pp. 3109–3114.Search in Google Scholar

Dolgov, M. (2017). Approximate Stochastic Optimal Control of Smooth Nonlinear Systems and Piecewise Linear Systems, PhD thesis, Karlsruhe Institute of Technology, Karlsruhe.Search in Google Scholar

Feldbaum, A.A. (1965). Optimal Control Systems, Academic Press, New York, NY.Search in Google Scholar

Filatov, N.M. and Unbehauen, H. (2004). Adaptive Dual Control: Theory and Applications, Springer-Verlag, Berlin/Heidelberg.10.1007/b96083Search in Google Scholar

Hijab, O. (1984). Entropy and dual control, 23rd Conference on Decision and Control, Las Vegas, NV, USA, pp. 45–50.Search in Google Scholar

Huang, C., Ho, D.W.C., Lu, J. and Kurths, J. (2012). Partial synchronization in stochastic dynamical networks with switching communication channels, Chaos: An Interdisciplinary Journal of Nonlinear Science22(2): 023108, DOI: 10.1063/1.3702576.10.1063/1.370257622757515Search in Google Scholar

Jiang, H. (2017). Uniform convergence rates for kernel density estimation, Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, pp. 1694–1703.Search in Google Scholar

Joe, H. (1989). Estimation of entropy and other functionals of a multivariate density, Annals of the Institute of Statistical Mathematics41(4): 683–697.10.1007/BF00057735Search in Google Scholar

Kolchinsky, A. and Tracey, B.D. (2017). Estimating mixture entropy with pairwise distances, Entropy19(361): 1–17.10.3390/e19070361Search in Google Scholar

Korbicz, J., Koscielny, J.M., Kowalczuk, Z. and Cholewa, W. (2004). Fault Diagnosis: Models, Artificial Intelligence, Applications, Springer-Verlag, Berlin/Heidelberg.10.1007/978-3-642-18615-8Search in Google Scholar

Kozlowski, E. and Banek, T. (2011). Active learning in discrete time stochastic systems, in J. Jozefczyk and D. Orski (Eds), Knowledge-Based Intelligent System Advancements: Systemic and Cybernetic Approaches, Information Science References, New York, NY, pp. 350–371.Search in Google Scholar

Mitter, S.K. and Newton, N.J. (2005). Information and entropy flow in the Kalman–Bucy filter, Journal of Statistical Physics118(1): 145–176.10.1007/s10955-004-8781-9Search in Google Scholar

Porta, J.M., Vlassis, N., Spaan, M.T. and Poupart, P. (2006). Point-based value iteration for continuous POMDPs, Journal of Machine Learning Research7(1): 2329–2367.Search in Google Scholar

Sagawa, T. and Ueda, M. (2013). Role of mutual information in entropy production under information exchanges, New Journal of Physics15(125012): 2–23.10.1088/1367-2630/15/12/125012Search in Google Scholar

Saridis, G.N. (1988). Entropy formulation of optimal and adaptive control, IEEE Transactions on Automatic Control33(8): 713–721.10.1109/9.1287Search in Google Scholar

Särkä, S. (2013). Bayesian Filtering and Smoothing, Cambridge University Press, New York, NY.10.1017/CBO9781139344203Search in Google Scholar

Taticonda, S. and Mitter, S.K. (2004). Control under communication constraints, IEEE Transactions on Automatic Control49(7): 1056–1068.10.1109/TAC.2004.831187Search in Google Scholar

Thrun, S. (2000). Monte Carlo POMDPs, in S. Solla et al. (Eds), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 1064–1070.Search in Google Scholar

Touchette, H. (2000). Information-theoretic Aspects in the Control of Dynamical Systems Master’s thesis, MIT, Cambridge, MA, https://pdfs.semanticscholar.org/c915/088f514d937f5d1c666221c95d731532101e.pdf.Search in Google Scholar

Touchette, H. and Lloyd, S. (2000). Information-theoretic limits of control, Physical Review Letters84(6): 1156–1159.10.1103/PhysRevLett.84.115611017467Search in Google Scholar

Touchette, H. and Lloyd, S. (2004). Information-theoretic approach to the study of control systems, Physica A331(1): 140–172.10.1016/j.physa.2003.09.007Search in Google Scholar

Tsai, Y.A., Casiello, F.A. and Loparo, K.A. (1992). Discrete-time entropy formulation of optimal and adaptive control problems, IEEE Transactions on Automatic Control37(7): 1083–1088.10.1109/9.148379Search in Google Scholar

Tse, E. (1974). Adaptive dual control methods, Annals of Economic and Social Measurement3(1): 65–82.Search in Google Scholar

Uciński, D. (2004). Optimal Measurement Methods for Distributed Parameter System Identification, CRC Press, Boca Raton, FL.10.1201/9780203026786Search in Google Scholar

Zabczyk, J. (1996). Chance and Decision. Stochastic Control in Discrete Time, Quaderni Scuola Normale di Pisa, Pisa.Search in Google Scholar

Zhao, D., Liu, J., Wu, R., Cheng, D. and Tang, X. (2019). An active exploration method for data efficient reinforcement learning, International Journal of Applied Mathematics and Computer Science29(2): 351–362, DOI: 10.2478/amcs-2019-0026.10.2478/amcs-2019-0026Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo