Cite

Ezgu F. Inborn errors of metabolism. Adv Clin Chem. 2016;73:195–250. doi: 10.1016/bs.acc.2015.12.001 Ezgu F Inborn errors of metabolism Adv Clin Chem 201673195250 10.1016/bs.acc.2015.12.00126975974Open DOISearch in Google Scholar

Mak CM, Lee HC, Chan AY, Lam CW. Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci. 2013;50(6):142–62. doi: 10.3109/10408363.2013.847896 Mak CM Lee HC Chan AY Lam CW Inborn errors of metabolism and expanded newborn screening: review and update Crit Rev Clin Lab Sci 201350614262 10.3109/10408363.2013.84789624295058Open DOISearch in Google Scholar

Fukao T, Nakamura K. Advances in inborn errors of metabolism. J Hum Genet. 2019;64(2):65. doi: 10.1038/s10038-018-0535-7 Fukao T Nakamura K Advances in inborn errors of metabolism J Hum Genet 201964265 10.1038/s10038-018-0535-730679804Open DOISearch in Google Scholar

Baruteau J, Waddington SN, Alexander IE, Gissen P. Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis. 2017;40(4):497–517. doi: 10.1007/s10545-017-0053-3 Baruteau J Waddington SN Alexander IE Gissen P Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects J Inherit Metab Dis 2017404497517 10.1007/s10545-017-0053-3550067328567541Open DOISearch in Google Scholar

Boudes PF. Gene therapy as a new treatment option for inherited monogenic diseases. Eur J Intern Med. 2014;25(1):31–6. doi: 10.1016/j.ejim.2013.09.009 Boudes PF Gene therapy as a new treatment option for inherited monogenic diseases Eur J Intern Med 2014251316 10.1016/j.ejim.2013.09.00924129166Open DOISearch in Google Scholar

Vink CA, Counsell JR, Perocheau DP, Karda R, Buckley SMK, Brugman MH, et al. Eliminating HIV-1 packaging sequences from lentiviral vector proviruses enhances safety and expedites gene transfer for gene therapy. Mol Ther. 2017;25(8):1790–804. doi: 10.1016/j.ymthe.2017.04.028 Vink CA Counsell JR Perocheau DP Karda R Buckley SMK Brugman MH et al Eliminating HIV-1 packaging sequences from lentiviral vector proviruses enhances safety and expedites gene transfer for gene therapy Mol Ther 20172581790804 10.1016/j.ymthe.2017.04.028554276628550974Open DOISearch in Google Scholar

Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58. doi: 10.1016/j. ymgme.2003.08.016 Raper SE Chirmule N Lee FS Wivel NA Bagg A Gao GP et al Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer Mol Genet Metab 2003801–214858 10.1016/j.ymgme.2003.08.01614567964Open DOISearch in Google Scholar

Mukherjee S, Thrasher AJ. Gene therapy for PIDs: progress, pitfalls and prospects. Gene. 2013;525(2):174–81. doi: 10.1016/j. gene.2013.03.098 Mukherjee S Thrasher AJ Gene therapy for PIDs: progress, pitfalls and prospects Gene 2013525217481 10.1016/j.gene.2013.03.098372541723566838Open DOISearch in Google Scholar

Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8. doi: 10.1056/NEJMoa0802315 Maguire AM Simonelli F Pierce EA Pugh EN Jr Mingozzi F Bennicelli J et al Safety and efficacy of gene transfer for Leber’s congenital amaurosis N Engl J Med 20083582122408 10.1056/NEJMoa0802315282974818441370Open DOISearch in Google Scholar

Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23. doi: 10.1126/science.1171242 Cartier N Hacein-Bey-Abina S Bartholomae CC Veres G Schmidt M Kutschera I et al Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy Science 2009326595481823 10.1126/science.117124219892975Open DOISearch in Google Scholar

Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158. doi: 10.1126/science.1233158 Biffi A Montini E Lorioli L Cesani M Fumagalli F Plati T et al Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy Science 201334161481233158 10.1126/science.123315823845948Open DOISearch in Google Scholar

Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19(5):876–85. doi: 10.1038/mt.2010.274. Nathwani AC Rosales C McIntosh J Rastegarlari G Nathwani D Raj D et al Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins Mol Ther 201119587685 10.1038/mt.2010.274309862921245849Open DOISearch in Google Scholar

Bryant LM, Christopher DM, Giles AR, Hinderer C, Rodriguez JL, Smith JB, et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev. 2013;24(2):55–64. doi: 10.1089/humc.2013.087 Bryant LM Christopher DM Giles AR Hinderer C Rodriguez JL Smith JB et al Lessons learned from the clinical development and market authorization of Glybera Hum Gene Ther Clin Dev 20132425564 10.1089/humc.2013.087399297723808604Open DOISearch in Google Scholar

Anguela XM, High KA. Entering the modern era of gene therapy. Annu Rev Med. 2019;70:273–288. doi: 10.1146/annurev-med-012017-043332 Anguela XM High KA Entering the modern era of gene therapy Annu Rev Med 201970273288 10.1146/annurev-med-012017-04333230477394Open DOISearch in Google Scholar

Sands MS, Davidson BL. Gene therapy for lysosomal storage diseases. Mol Ther. 2006;13(5):839–49. doi: 10.1016/j. ymthe.2006.01.006 Sands MS Davidson BL Gene therapy for lysosomal storage diseases Mol Ther 200613583949 10.1016/j.ymthe.2006.01.00616545619Open DOISearch in Google Scholar

European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Guideline on bioanalytical method validation. G.o.b.m.v. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2. 2011 July 21. London, UK: European Medicines Agency; 2015. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf European Medicines Agency, Committee for Medicinal Products for Human Use (CHMP). Guideline on bioanalytical method validation G.o.b.m.v. EMEA/CHMP/EWP/192217/2009 Rev. 1 Corr. 2 2011 July 21 London, UK European Medicines Agency 2015 Available from http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdfSearch in Google Scholar

Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55. doi: 10.1038/nrg2988. Erratum in: Nat Rev Genet. 2011;12(7):515. Mingozzi F High KA Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges Nat Rev Genet 201112534155 10.1038/nrg2988 Erratum in: Nat Rev Genet. 2011;12(7):51521499295Open DOISearch in Google Scholar

Fraldi A, Serafini M, Sorrentino NC, Gentner B, Aiuti A, Bernardo ME. Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Ital J Pediatr. 2018;44(Suppl 2):130. doi: 10.1186/s13052-018-0565-y Fraldi A Serafini M Sorrentino NC Gentner B Aiuti A Bernardo ME Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches Ital J Pediatr 201844Suppl 2130 10.1186/s13052-018-0565-y623825030442177Open DOISearch in Google Scholar

Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31. doi: 10.1038/nm.3793 Cox DB Platt RJ Zhang F Therapeutic genome editing: prospects and challenges Nat Med 201521212131 10.1038/nm.3793449268325654603Open DOISearch in Google Scholar

Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169–1175. Bibikova M Golic M Golic KG Carroll D Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases Genetics 200216131169117510.1093/genetics/161.3.1169146216612136019Search in Google Scholar

Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8. doi: 10.1038/nbt.3469 Yang Y Wang L Bell P McMenamin D He Z White J et al A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice Nat Biotechnol 20163433348 10.1038/nbt.3469478648926829317Open DOISearch in Google Scholar

Villiger L, Grisch-Chan HM, Lindsay H, Ringnalda F, Pogliano CB, Allegri G, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice. Nat Med. 2018;24(10):1519–25. doi: 10.1038/s41591-018-0209-1 Villiger L Grisch-Chan HM Lindsay H Ringnalda F Pogliano CB Allegri G et al Treatment of a metabolic liver disease by in vivo genome base editing in adult mice Nat Med 20182410151925 10.1038/s41591-018-0209-130297904Open DOISearch in Google Scholar

Zabaleta N, Barberia M, Martin-Higueras C, Zapata-Linares N, Betancor I, Rodriguez S, et al. CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat Commun. 2018;9(1):5454. doi: 10.1038/s41467-018-07827-1 Zabaleta N Barberia M Martin-Higueras C Zapata-Linares N Betancor I Rodriguez S et al CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I Nat Commun 2018915454 10.1038/s41467-018-07827-1630332330575740Open DOISearch in Google Scholar

Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT, Cromer MK, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med. 2019;25(2):249–54. doi: 10.1038/s41591-018-0326-x Charlesworth CT Deshpande PS Dever DP Camarena J Lemgart VT Cromer MK et al Identification of preexisting adaptive immunity to Cas9 proteins in humans Nat Med 201925224954 10.1038/s41591-018-0326-x719958930692695Open DOISearch in Google Scholar

Perocheau DP, Cunningham S, Lee J, Antinao Diaz J, Waddington SN, Gilmour K, et al. Age-related seroprevalence of antibodies against AAV-LK03 in a UK population cohort. Hum Gene Ther. 2019;30(1):79–87. doi: 10.1089/hum.2018.098 Perocheau DP Cunningham S Lee J Antinao Diaz J Waddington SN Gilmour K et al Age-related seroprevalence of antibodies against AAV-LK03 in a UK population cohort Hum Gene Ther 20193017987 10.1089/hum.2018.098634318430027761Open DOISearch in Google Scholar

Savić N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21. doi: 10.1016/j. trsl.2015.09.008 SavićN SchwankG Advances in therapeutic CRISPR/Cas9 genome editing Transl Res 20161681521 10.1016/j.trsl.2015.09.00826470680Open DOISearch in Google Scholar

Sack BK, Herzog RW. Evading the immune response upon in vivo gene therapy with viral vectors. Curr Opin Mol Ther. 2009;11(5):493–503. Sack BK Herzog RW Evading the immune response upon in vivo gene therapy with viral vectors Curr Opin Mol Ther 2009115493503Search in Google Scholar

Baruteau J, Waddington SN, Alexander IE, Gissen P. Delivering efficient liver-directed AAV-mediated gene therapy. Gene Ther. 2017;24(5):263–4. doi: 10.1038/gt.2016.90 Baruteau J Waddington SN Alexander IE Gissen P. Delivering efficient liver-directed AAV-mediated gene therapy Gene Ther 20172452634 10.1038/gt.2016.9028079048Open DOISearch in Google Scholar

Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. Version 2. J Clin Invest. 2008;118(9):3132–42. doi: 10.1172/JCI35700 Hacein-Bey-Abina S Garrigue A Wang GP Soulier J Lim A Morillon E et al Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1 Version 2. J Clin Invest 20081189313242 10.1172/JCI35700249696318688285Open DOISearch in Google Scholar

De Palma M, Montini E, Santoni de Sio FR, Benedicenti F, Gentile A, Medico E, et al. Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells. Blood. 2005;105(6):2307–15. doi: 10.1182/blood-2004-03-0798 De Palma M Montini E Santoni de Sio FR Benedicenti F Gentile A Medico E et al Promoter trapping reveals significant differences in integration site selection between MLV and HIV vectors in primary hematopoietic cells Blood 20051056230715 10.1182/blood-2004-03-079815542582Open DOISearch in Google Scholar

Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest. 2009;119(4):964–75. doi: 10.1172/JCI37630 Montini E Cesana D Schmidt M Sanvito F Bartholomae CC Ranzani M et al The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy J Clin Invest 2009119496475 10.1172/JCI37630266256419307726Open DOISearch in Google Scholar

Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873–80. doi: 10.1128/JVI.72.12.9873-9880.1998 Zufferey R Dull T Mandel RJ Bukovsky A Quiroz D Naldini L et al Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery J Virol 19987212987380 10.1128/JVI.72.12.9873-9880.19981104999811723Open DOISearch in Google Scholar

Moiani A, Paleari Y, Sartori D, Mezzadra R, Miccio A, Cattoglio C, et al. Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts. J Clin Invest. 2012;122(5):1653–66. doi: 10.1172/JCI61852 Moiani A Paleari Y Sartori D Mezzadra R Miccio A Cattoglio C et al Lentiviral vector integration in the human genome induces alternative splicing and generates aberrant transcripts J Clin Invest 20121225165366 10.1172/JCI61852Open DOISearch in Google Scholar

Dolgin E. ‘Bubble boy’ gene therapy reignites commercial interest. Nat Biotechnol. 2019;37(7):699–701. doi: 10.1038/d41587-019-00015-6 Dolgin E. ‘Bubble boy’ gene therapy reignites commercial interest Nat Biotechnol 2019377699701 10.1038/d41587-019-00015-6Open DOISearch in Google Scholar

Counsell JR, Karda R, Diaz JA, Carey L, Wiktorowicz T, Buckley SMK, et al. Foamy virus vectors transduce visceral organs and hippocampal structures following in vivo delivery to neonatal mice. Mol Ther Nucleic Acids. 2018;12:626–34. doi: 10.1016/j. omtn.2018.07.006 Counsell JR Karda R Diaz JA Carey L Wiktorowicz T Buckley SMK et al Foamy virus vectors transduce visceral organs and hippocampal structures following in vivo delivery to neonatal mice Mol Ther Nucleic Acids 20181262634 10.1016/j.omtn.2018.07.006Open DOISearch in Google Scholar

Counsell JR, Asgarian Z, Meng J, Ferrer V, Vink CA, Howe SJ, et al. Lentiviral vectors can be used for full-length dystrophin gene therapy. Sci Rep. 2017;7:44775. doi: 10.1038/srep44775. Erratum in: Sci Rep. 2017 Aug 29;7:46880. Counsell JR Asgarian Z Meng J Ferrer V Vink CA Howe SJ et al Lentiviral vectors can be used for full-length dystrophin gene therapy Sci Rep 2017744775 10.1038/srep44775 Erratum in: Sci Rep. 2017 Aug 29;7:46880Open DOISearch in Google Scholar

Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol. 2014;1(1):427–51. doi: 10.1146/annurev-virology-031413-085355 Samulski RJ Muzyczka N AAV-mediated gene therapy for research and therapeutic purposes Annu Rev Virol 20141142751 10.1146/annurev-virology-031413-085355Open DOISearch in Google Scholar

Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): Where are we, and how did we get here? Annu Rev Virol. 2019;6(1):601–21. doi: 10.1146/annurev-virology-092818-015530 Keeler AM Flotte TR Recombinant adeno-associated virus gene therapy in light of luxturna (and zolgensma and glybera): Where are we, and how did we get here? Annu Rev Virol 20196160121 10.1146/annurev-virology-092818-015530Open DOISearch in Google Scholar

Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12. doi: 10.1089/hum.2009.182 Boutin S Monteilhet V Veron P Leborgne C Benveniste O Montus MF et al Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5 6 8 and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12. doi 10.1089/hum.2009.182Open DOISearch in Google Scholar

Berns KI, Muzyczka N. AAV: an overview of unanswered questions. Hum Gene Ther. 2017;28(4):308–13. doi: 10.1089/hum.2017.048 Berns KI Muzyczka N AAV: an overview of unanswered questions Hum Gene Ther 201728430813 10.1089/hum.2017.048Open DOISearch in Google Scholar

Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine. 2015;10:975–99. doi: 10.2147/IJN.S68861 Bozzuto G Molinari A. Liposomes as nanomedical devices Int J Nanomedicine 20151097599 10.2147/IJN.S68861Open DOISearch in Google Scholar

Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface – active agents as observed in the electron miscroscope. J Mol Biol. 1964;8:660–8. doi: 10.1016/s0022-2836(64)80115-7 Bangham AD Horne RW Negative staining of phospholipids and their structural modification by surface – active agents as observed in the electron miscroscope J Mol Biol 196486608 10.1016/s0022-2836(64)80115-7Open DOISearch in Google Scholar

Mărgineanu DG. Equilibrium and non-equilibrium approaches in biomembrane thermodynamics. Arch Int Physiol Biochim. 1987;95(5):381–422. doi: 10.3109/13813458709075033 Mărgineanu DG Equilibrium and non-equilibrium approaches in biomembrane thermodynamics Arch Int Physiol Biochim 1987955381422 10.3109/138134587090750332452614Open DOISearch in Google Scholar

Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91. doi: 10.3109/21691401.2014.953633 Daraee H Etemadi A Kouhi M Alimirzalu S Akbarzadeh A Application of liposomes in medicine and drug delivery Artif Cells Nanomed Biotechnol 201644138191 10.3109/21691401.2014.95363325222036Open DOISearch in Google Scholar

Balazs DA, Godbey W. Liposomes for use in gene delivery. J Drug Deliv. 2011;2011:326497. doi: 10.1155/2011/326497 Balazs DA Godbey W Liposomes for use in gene delivery J Drug Deliv 20112011326497 10.1155/2011/326497306657121490748Open DOISearch in Google Scholar

Srinivas R, Samanta S, Chaudhuri A. Cationic amphiphiles: promising carriers of genetic materials in gene therapy. Chem Soc Rev. 2009;38(12):3326–38. doi: 10.1039/b813869a Srinivas R Samanta S Chaudhuri A Cationic amphiphiles: promising carriers of genetic materials in gene therapy Chem Soc Rev 20093812332638 10.1039/b813869a20449052Open DOISearch in Google Scholar

Çağdaş M, Sezer AD, Bucak S. Liposomes as potential drug carrier systems for drug delivery. doi: 10.5772/58459. In: Sezer AD, editor. Application of nanotechnology in drug delivery. London, UK: IntechOpen Limited; 2014 July 25th. doi: 10.5772/57028. ISBN 978-953-51-1628-8. eBook ISBN 978-953-51-5756-4. Available from: https://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/liposomes-as-potential-drug-carrier-systems-for-drug-delivery ÇağdaşM SezerAD BucakS Liposomes as potential drug carrier systems for drug delivery 10.5772/58459 SezerAD editor. Application of nanotechnology in drug delivery London, UK IntechOpen Limited 2014 July 25th. doi: 10.5772/57028. ISBN 978-953-51-1628-8. eBook ISBN 978-953-51-5756-4. Available from https://www.intechopen.com/books/application-of-nanotechnology-in-drug-delivery/liposomes-as-potential-drug-carrier-systems-for-drug-deliveryOpen DOISearch in Google Scholar

Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 2017;24(8):441–52. doi: 10.1038/gt.2017.41 Zylberberg C Gaskill K Pasley S Matosevic S Engineering liposomal nanoparticles for targeted gene therapy Gene Ther 201724844152 10.1038/gt.2017.4128504657Open DOISearch in Google Scholar

Zang X, Ding H, Zhao X, Li X, Du Z, Hu H, et al. Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA. Int J Nanomedicine. 2016;11:3951–67. doi: 10.2147/IJN.S107952 Zang X Ding H Zhao X Li X Du Z Hu H et al Anti-EphA10 antibody-conjugated pH-sensitive liposomes for specific intracellular delivery of siRNA Int J Nanomedicine 201611395167 10.2147/IJN.S107952499327927574425Open DOISearch in Google Scholar

Liu YJ, Dou XQ, Wang F, Zhang J, Wang XL, Xu GL, et al. IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment. J Drug Target. 2017;25(3):275–83. doi: 10.1080/1061186X.2016.1258569 Liu YJ Dou XQ Wang F Zhang J Wang XL Xu GL et al IL-4Rα aptamer-liposome-CpG oligodeoxynucleotides suppress tumour growth by targeting the tumour microenvironment J Drug Target 201725327583 10.1080/1061186X.2016.125856927819142Open DOISearch in Google Scholar

Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Controlled Release. 2013;167(1):1–10. doi: 10.1016/j.jconrel.2013.01.016 Sharma G Modgil A Layek B Arora K Sun C Law B et al Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection J Controlled Release 20131671110 10.1016/j.jconrel.2013.01.01623352910Open DOISearch in Google Scholar

Saffari M, Moghimi HR, Dass CR. Barriers to liposomal gene delivery: from application site to the target. Iran J Pharm Res. 2016 Winter;15(Suppl):3–17. Saffari M Moghimi HR Dass CR Barriers to liposomal gene delivery: from application site to the target Iran J Pharm Res 2016 15Suppl317Search in Google Scholar

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. doi: 10.1186/1556-276X-8-102 Akbarzadeh A Rezaei-Sadabady R Davaran S Joo SW Zarghami N Hanifehpour Y et al Liposome: classification, preparation, and applications Nanoscale Res Lett 201381102 10.1186/1556-276X-8-102359957323432972Open DOISearch in Google Scholar

Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–16. doi: 10.1016/j.addr.2013.12.008 Ozpolat B Sood AK Lopez-Berestein G Liposomal siRNA nanocarriers for cancer therapy Adv Drug Deliv Rev 20146611016 10.1016/j.addr.2013.12.008452716524384374Open DOISearch in Google Scholar

Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, Lopez-Berestein G, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res. 2005;65(15):6910–8. doi: 10.1158/0008-5472.CAN-05-0530 Landen CN Jr Chavez-Reyes A Bucana C Schmandt R Deavers MT Lopez-Berestein G et al Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery Cancer Res 2005651569108 10.1158/0008-5472.CAN-05-053016061675Open DOISearch in Google Scholar

Rufino-Ramos D, Albuquerque PR, Carmona V, Perfeito R, Nobre RJ, Pereira de Almeida L. Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases. J Control Release. 2017;262:247-258. doi: 10.1016/j.jconrel.2017.07.001. Rufino-Ramos D AlbuquerquePR CarmonaV PerfeitoR NobreRJ Pereira de AlmeidaL Extracellular vesicles: Novel promising delivery systems for therapy of brain diseases J Control Release 2017262247258 10.1016/j.jconrel.2017.07.00128687495Open DOISearch in Google Scholar

Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75(2):193–208. doi: 10.1007/s00018-017-2595-9 Hessvik NP Llorente A. Current knowledge on exosome biogenesis and release Cell Mol Life Sci 2018752193208 10.1007/s00018-017-2595-9575626028733901Open DOISearch in Google Scholar

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–659. doi: 10.1038/ncb1596 Valadi H Ekström K Bossios A Sjöstrand M Lee JJ Lötvall JO Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells Nat Cell Biol 200796654659 10.1038/ncb159617486113Open DOISearch in Google Scholar

Bang C, Thum T. Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol. 2012;44(11):2060–4. doi: 10.1016/j.biocel.2012.08.007 Bang C Thum T Exosomes: new players in cell-cell communication Int J Biochem Cell Biol 2012441120604 10.1016/j.biocel.2012.08.00722903023Open DOISearch in Google Scholar

De Toro J, Herschlik L, Waldner C, Mongini C. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. 2015;6:203. doi: 10.3389/fimmu.2015.00203 De ToroJ HerschlikL WaldnerC MonginiC Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications Front Immunol 20156203 10.3389/fimmu.2015.00203441817225999947Open DOISearch in Google Scholar

Arenaccio C, Federico M. The multifaceted functions of exosomes in health and disease: an overview. Adv Exp Med Biol. 2017;998:3–19. doi: 10.1007/978-981-10-4397-0_1 Arenaccio C Federico M The multifaceted functions of exosomes in health and disease: an overview Adv Exp Med Biol 2017998319 10.1007/978-981-10-4397-0_128936729Open DOISearch in Google Scholar

Jiang XC, Gao JQ. Exosomes as novel bio-carriers for gene and drug delivery. Int J Pharm. 2017;521(1–2):167–75. doi: 10.1016/j. ijpharm.2017.02.038 Jiang XC Gao JQ Exosomes as novel bio-carriers for gene and drug delivery Int J Pharm 20175211–216775 10.1016/j.ijpharm.2017.02.03828216464Open DOISearch in Google Scholar

Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther. 2013;21(1):185–91. doi: 10.1038/mt.2012.180 Ohno S Takanashi M Sudo K Ueda S Ishikawa A Matsuyama N et al Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells Mol Ther 201321118591 10.1038/mt.2012.180353830423032975Open DOISearch in Google Scholar

Wahlgren J, De L Karlson T, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, et al. Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res. 2012;40(17):e130. doi: 10.1093/nar/gks463 Wahlgren J De L Karlson T Brisslert M Vaziri Sani F Telemo E Sunnerhagen P et al Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes Nucleic Acids Res 20124017e130 10.1093/nar/gks463345852922618874Open DOISearch in Google Scholar

Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol. 2014;306(7):C621–33. doi: 10.1152/ajpcell.00228.2013 Turturici G Tinnirello R Sconzo G Geraci F Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages Am J Physiol Cell Physiol 20143067C62133 10.1152/ajpcell.00228.201324452373Open DOISearch in Google Scholar

Haney MJ, Klyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Controlled Release. 2015;207:18–30. doi: 10.1016/j. jconrel.2015.03.033 Haney MJ Klyachko NL Zhao Y Gupta R Plotnikova EG He Z et al Exosomes as drug delivery vehicles for Parkinson’s disease therapy J Controlled Release 20152071830 10.1016/j.jconrel.2015.03.033443038125836593Open DOISearch in Google Scholar

Mentkowski KI, Lang JK. Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo. Sci Rep. 2019;9(1):10041. doi: 10.1038/s41598-019-46407-1 Mentkowski KI Lang JK Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo Sci Rep 20199110041 10.1038/s41598-019-46407-1662424831296886Open DOISearch in Google Scholar

Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol. 2018;16(1):81. doi: 10.1186/s12951-018-0403-9 Bunggulawa EJ Wang W Yin T Wang N Durkan C Wang Y et al Recent advancements in the use of exosomes as drug delivery systems J Nanobiotechnol 201816181 10.1186/s12951-018-0403-9619056230326899Open DOISearch in Google Scholar

Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B. 2016;6(4):287–96. doi: 10.1016/j.apsb.2016.02.001 Ha D Yang N Nadithe V Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges Acta Pharm Sin B 20166428796 10.1016/j.apsb.2016.02.001495158227471669Open DOISearch in Google Scholar

Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21(1):9–17. doi: 10.1038/s41556-018-0250-9 Mathieu M Martin-Jaular L Lavieu G Théry C Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication Nat Cell Biol 2019211917 10.1038/s41556-018-0250-930602770Open DOISearch in Google Scholar

Nunes FA, Furth EE, Wilson JM, Raper SE. Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration. Hum Gene Ther. 1999;10(15):2515–26. doi: 10.1089/10430349950016852 Nunes FA Furth EE Wilson JM Raper SE Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration Hum Gene Ther 19991015251526 10.1089/1043034995001685210543616Open DOISearch in Google Scholar

Do MA, Levy D, Brown A, Marriott G, Lu B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci Rep. 2019;9(1):17274. doi: 10.1038/s41598-019-53844-5 Do MA Levy D Brown A Marriott G Lu B Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles Sci Rep 20199117274 10.1038/s41598-019-53844-5687276731754156Open DOISearch in Google Scholar

Yim N, Ryu SW, Choi K, Lee KR, Lee S, Choi H, et al. Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nat Commun. 2016;7:12277. doi: 10.1038/ncomms12277 Yim N Ryu SW Choi K Lee KR Lee S Choi H et al Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module Nat Commun 2016712277 10.1038/ncomms12277496186527447450Open DOISearch in Google Scholar

Del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm. 2016;109:184–93. doi: 10.1016/j.ejpb.2016.10.016 Del Pozo-RodríguezA Solinís Rodríguez-GascónA Applications of lipid nanoparticles in gene therapy Eur J Pharm Biopharm 201610918493 10.1016/j.ejpb.2016.10.01627789356Open DOISearch in Google Scholar

Blakney AK, McKay PF, Yus BI, Aldon Y, Shattock RJ. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene Ther. 2019;26(9):363–72. doi: 10.1038/s41434-019-0095-2 Blakney AK McKay PF Yus BI Aldon Y Shattock RJ Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA Gene Ther 201926936372 10.1038/s41434-019-0095-2676053531300730Open DOISearch in Google Scholar

Berraondo P, Martini PGV, Avila MA, Fontanellas A. Messenger RNA therapy for rare genetic metabolic diseases. Gut. 2019;68(7):1323–30. doi: 10.1136/gutjnl-2019-318269 Berraondo P Martini PGV Avila MA Fontanellas A Messenger RNA therapy for rare genetic metabolic diseases Gut 2019687132330 10.1136/gutjnl-2019-31826930796097Open DOISearch in Google Scholar

Martini PGV, Guey LT. A new era for rare genetic diseases: messenger RNA therapy. Hum Gene Ther. 2019;30(10):1180–9. doi: 10.1089/hum.2019.090 Martini PGV Guey LT A new era for rare genetic diseases: messenger RNA therapy Hum Gene Ther 2019301011809 10.1089/hum.2019.09031179759Open DOISearch in Google Scholar

Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58. doi: 10.4103/0250-474X.57282 Mukherjee S Ray S Thakur RS Solid lipid nanoparticles: a modern formulation approach in drug delivery system Indian J Pharm Sci 200971434958 10.4103/0250-474X.57282286580520502539Open DOISearch in Google Scholar

Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci USA. 2012;109(36):14604–9. doi: 10.1073/pnas.1209367109 Geall AJ Verma A Otten GR Shaw CA Hekele A Banerjee K et al Nonviral delivery of self-amplifying RNA vaccines Proc Natl Acad Sci USA 201210936146049 10.1073/pnas.1209367109343786322908294Open DOISearch in Google Scholar

Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61(9):880–94. doi: 10.1002/iub.230 Pegg AE. Mammalian polyamine metabolism function IUBMB Life 200961988094 10.1002/iub.230275342119603518Open DOISearch in Google Scholar

Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64. doi: 10.1038/mt.2010.85 Akinc A Querbes W De S Qin J Frank-Kamenetsky M Jayaprakash KN et al Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms Mol Ther 2010187135764 10.1038/mt.2010.85291126420461061Open DOISearch in Google Scholar

An D, Schneller JL, Frassetto A, Liang S, Zhu X, Park JS, et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017;21(12):3548–58. doi: 10.1016/j.celrep.2017.11.081. Erratum in: Cell Rep. 2018;24(9):2520. An D Schneller JL Frassetto A Liang S Zhu X Park JS et al Systemic messenger RNA therapy as a treatment for methylmalonic acidemia Cell Rep 20172112354858 10.1016/j.celrep.2017.11.081 Erratum in: Cell Rep. 2018;24(9):252029262333Open DOISearch in Google Scholar

Jiang L, Berraondo P, Jericó D, Guey LT, Sampedro A, Frassetto A, et al. Systemic messenger RNA as an etiological treatment for acute intermittent porphyria. Nat Med. 2018;24(12):1899-909. doi: 10.1038/s41591-018-0199-z Jiang L Berraondo P Jericó D Guey LT Sampedro A Frassetto A et al Systemic messenger RNA as an etiological treatment for acute intermittent porphyria Nat Med 201824121899 909 10.1038/s41591-018-0199-z30297912Open DOISearch in Google Scholar

Inagaki K, Piao C, Kotchey NM, Wu X, Nakai H. Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver. J Virol. 2008;82(19):9513–24. doi: 10.1128/JVI.01001-08 Inagaki K Piao C Kotchey NM Wu X Nakai H Frequency and spectrum of genomic integration of recombinant adeno-associated virus serotype 8 vector in neonatal mouse liver J Virol 20088219951324 10.1128/JVI.01001-08254694918614641Open DOISearch in Google Scholar

Prieve MG, Harvie P, Monahan SD, Roy D, Li AG, Blevins TL, et al. Targeted mRNA therapy for ornithine transcarbamylase deficiency. Mol Ther. 2018;26(3):801–13. doi: 10.1016/j.ymthe.2017.12.024 Prieve MG Harvie P Monahan SD Roy D Li AG Blevins TL et al Targeted mRNA therapy for ornithine transcarbamylase deficiency Mol Ther 201826380113 10.1016/j.ymthe.2017.12.024591066929433939Open DOISearch in Google Scholar

Truong B, Allegri G, Liu XB, Burke KE, Zhu X, Cederbaum SD, et al. Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency. Proc Natl Acad Sci USA. 2019;116(42):21150–9. doi: 10.1073/pnas.1906182116 Truong B Allegri G Liu XB Burke KE Zhu X Cederbaum SD et al Lipid nanoparticle-targeted mRNA therapy as a treatment for the inherited metabolic liver disorder arginase deficiency Proc Natl Acad Sci USA 201911642211509 10.1073/pnas.1906182116680036031501335Open DOISearch in Google Scholar

Balakrishnan B, An D, Nguyen V, DeAntonis C, Martini PGV, Lai K. Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic galactosemia. Mol Ther. 2020;28(1):304–12. doi: 10.1016/j.ymthe.2019.09.018 Balakrishnan B An D Nguyen V DeAntonis C Martini PGV Lai K Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic galactosemia Mol Ther 202028130412 10.1016/j.ymthe.2019.09.018695216531604675Open DOISearch in Google Scholar

Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase. Sci Transl Med. 2017;9(418):eaam6375. doi: 10.1126/scitranslmed.aam6375 Puzzo F Colella P Biferi MG Bali D Paulk NK Vidal P et al Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid α-glucosidase Sci Transl Med 20179418 10.1126/scitranslmed.aam6375582661129187643Open DOISearch in Google Scholar

Baruteau J, Waddington SN. Fetal gene therapy for neurodegenerative lysosomal storage diseases. J Inherit Metab Dis. 2019;42(3):391–3. doi: 10.1002/jimd.12018 Baruteau J Waddington SN Fetal gene therapy for neurodegenerative lysosomal storage diseases J Inherit Metab Dis 20194233913 10.1002/jimd.1201830715735Open DOISearch in Google Scholar

Hocquemiller M, Hemsley KM, Douglass ML, Tamang SJ, Neumann D, King BM, et al. AAVrh10 vector corrects disease pathology in MPS IIIA mice and achieves widespread distribution of SGSH in large animal brains. Mol Ther Methods Clin Dev. 2019;17:174–87. doi: 10.1016/j.omtm.2019.12.001 Hocquemiller M Hemsley KM Douglass ML Tamang SJ Neumann D King BM et al AAVrh10 vector corrects disease pathology in MPS IIIA mice and achieves widespread distribution of SGSH in large animal brains Mol Ther Methods Clin Dev 20191717487 10.1016/j.omtm.2019.12.001694061531909089Open DOISearch in Google Scholar

Ellison SM, Liao A, Wood S, Taylor J, Youshani AS, Rowlston S, et al. Pre-clinical safety and efficacy of lentiviral vector-mediated ex vivo stem cell gene therapy for the treatment of mucopolysaccharidosis IIIA. Mol Ther Methods Clin Dev. 2019;13:399–413. doi: 10.1016/j.omtm.2019.04.001 Ellison SM Liao A Wood S Taylor J Youshani AS Rowlston S et al Pre-clinical safety and efficacy of lentiviral vector-mediated ex vivo stem cell gene therapy for the treatment of mucopolysaccharidosis IIIA Mol Ther Methods Clin Dev 201913399413 10.1016/j.omtm.2019.04.001647920431044143Open DOISearch in Google Scholar

Torres-Torronteras J, Cabrera-Pérez R, Vila-Julià F, Viscomi C, Cámara Y, Hirano M, et al. Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 2018;29(6):708–18. doi: 10.1089/hum.2017.133 Torres-Torronteras J Cabrera-Pérez R Vila-Julià F Viscomi C Cámara Y Hirano M et al Long-term sustained effect of liver-targeted adeno-associated virus gene therapy for mitochondrial neurogastrointestinal encephalomyopathy Hum Gene Ther 201829670818 10.1089/hum.2017.133764793129284302Open DOISearch in Google Scholar

Cunningham SC, Kok CY, Spinoulas A, Carpenter KH, Alexander IE. AAV-encoded OTC activity persisting to adulthood following delivery to newborn spf(ash) mice is insufficient to prevent shRNA-induced hyperammonaemia. Gene Ther. 2013;20(12):1184–7. doi: 10.1038/gt.2013.51 Cunningham SC Kok CY Spinoulas A Carpenter KH Alexander IE AAV-encoded OTC activity persisting to adulthood following delivery to newborn spf(ash) mice is insufficient to prevent shRNA-induced hyperammonaemia Gene Ther 2013201211847 10.1038/gt.2013.5124108150Open DOISearch in Google Scholar

Kok CY, Cunningham SC, Carpenter KH, Dane AP, Siew SM, Logan GJ, et al. Adeno-associated virus-mediated rescue of neonatal lethality in argininosuccinate synthetase-deficient mice. Mol Ther. 2013;21(10):1823–31. doi: 10.1038/mt.2013.139 Kok CY Cunningham SC Carpenter KH Dane AP Siew SM Logan GJ et al Adeno-associated virus-mediated rescue of neonatal lethality in argininosuccinate synthetase-deficient mice Mol Ther 20132110182331 10.1038/mt.2013.139380813623817206Open DOISearch in Google Scholar

Baruteau J, Perocheau DP, Hanley J, Lorvellec M, Rocha-Ferreira E, Karda R, et al. Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nat Commun. 2018;9(1):3505. doi: 10.1038/s41467-018-05972-1 Baruteau J Perocheau DP Hanley J Lorvellec M Rocha-Ferreira E Karda R et al Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer Nat Commun 2018913505 10.1038/s41467-018-05972-1611541730158522Open DOISearch in Google Scholar

Hu C, Tai DS, Park H, Cantero G, Cantero-Nieto G, Chan E, et al. Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy. Gene Ther. 2015;22(2):111–5. doi: 10.1038/gt.2014.106 Hu C Tai DS Park H Cantero G Cantero-Nieto G Chan E et al Minimal ureagenesis is necessary for survival in the murine model of hyperargininemia treated by AAV-based gene therapy Gene Ther 20152221115 10.1038/gt.2014.106432001525474440Open DOISearch in Google Scholar

Ou L, DeKelver RC, Rohde M, Tom S, Radeke R, St Martin SJ, et al. ZFN-mediated in vivo genome editing corrects murine hurler syndrome. Mol Ther. 2019;27(1):178–87. doi: 10.1016/j. ymthe.2018.10.018 Ou L DeKelver RC Rohde M Tom S Radeke R St Martin SJ et al ZFN-mediated in vivo genome editing corrects murine hurler syndrome Mol Ther 201927117887 10.1016/j.ymthe.2018.10.018631931530528089Open DOISearch in Google Scholar

Laoharawee K, DeKelver RC, Podetz-Pedersen KM, Rohde M, Sproul S, Nguyen HO, et al. Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing. Mol Ther. 2018;26(4):1127– 36. doi: 10.1016/j.ymthe.2018.03.002 Laoharawee K DeKelver RC Podetz-Pedersen KM Rohde M Sproul S Nguyen HO et al Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing Mol Ther 20182641127–36 10.1016/j.ymthe.2018.03.002608013129580682Open DOISearch in Google Scholar

Cunningham SC, Siew SM, Hallwirth CV, Bolitho C, Sasaki N, Garg G, et al. Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system. Hepatology. 2015;62(2):417–28. doi: 10.1002/hep.27842 Cunningham SC Siew SM Hallwirth CV Bolitho C Sasaki N Garg G et al Modeling correction of severe urea cycle defects in the growing murine liver using a hybrid recombinant adeno-associated virus/piggyBac transposase gene delivery system Hepatology 201562241728 10.1002/hep.2784226011400Open DOISearch in Google Scholar

Eichler F, Duncan C, Musolino PL, Orchard PJ, De Oliveira S, Thrasher AJ, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630–8. doi: 10.1056/NEJMoa1700554 Eichler F Duncan C Musolino PL Orchard PJ De Oliveira S Thrasher AJ et al Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy N Engl J Med 20173771716308 10.1056/NEJMoa1700554570884928976817Open DOISearch in Google Scholar

Poletti V, Biffi A. Gene-based approaches to inherited neurometabolic diseases. Hum Gene Ther. 2019;30(10):1222– 35. doi: 10.1089/hum.2019.190 Poletti V Biffi A Gene-based approaches to inherited neurometabolic diseases Hum Gene Ther 201930101222–35 10.1089/hum.2019.19031397176Open DOISearch in Google Scholar

Angelis A, Tordrup D, Kanavos P. Socio-economic burden of rare diseases: a systematic review of cost of illness evidence. Health Policy. 2015;119(7):964–79. doi: 10.1016/j.healthpol.2014.12.016 Angelis A Tordrup D Kanavos P Socio-economic burden of rare diseases: a systematic review of cost of illness evidence Health Policy 2015119796479 10.1016/j.healthpol.2014.12.01625661982Open DOISearch in Google Scholar

George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017;377(23):2215–27. doi: 10.1056/NEJMoa1708538 George LA Sullivan SK Giermasz A Rasko JEJ Samelson-Jones BJ Ducore J et al Hemophilia B gene therapy with a high-specific-activity factor IX variant N Engl J Med 201737723221527 10.1056/NEJMoa1708538602962629211678Open DOISearch in Google Scholar

eISSN:
2719-535X
Language:
English