Cite

Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F, Wilczynski B, et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009 Jun 01;25(11):1422–1423. https://doi.org/10.1093/bioinformatics/btp163CockPJAAntaoTChangJTChapmanBACoxCJDalkeAFriedbergIHamelryckTKauffFWilczynskiBet al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics.2009Jun01;25(11):14221423. https://doi.org/10.1093/bioinformatics/btp16310.1093/bioinformatics/btp163268251219304878Search in Google Scholar

Ding Y, Teo JWP, Drautz-Moses DI, Schuster SC, Givskov M, Yang L. Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Commun Biol. 2018 Dec;1(1):57. https://doi.org/10.1038/s42003-018-0064-0DingYTeoJWPDrautz-MosesDISchusterSCGivskovMYangL. Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Commun Biol.2018Dec;1(1):57. https://doi.org/10.1038/s42003-018-0064-010.1038/s42003-018-0064-0612362130271939Search in Google Scholar

Dolejska M, Villa L, Poirel L, Nordmann P, Carattoli A. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother. 2013 Jan 01;68(1):34–39. https://doi.org/10.1093/jac/dks357DolejskaMVillaLPoirelLNordmannPCarattoliA. Complete sequencing of an IncHI1 plasmid encoding the carbapenemase NDM-1, the ArmA 16S RNA methylase and a resistance-nodulation-cell division/multidrug efflux pump. J Antimicrob Chemother.2013Jan01;68(1):3439. https://doi.org/10.1093/jac/dks35710.1093/jac/dks35722969080Search in Google Scholar

El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015 Oct;10(10):1683–1706. https://doi.org/10.2217/fmb.15.48El ZowalatyMEAl ThaniAAWebsterTJEl ZowalatyAESchweizerHPNasrallahGKMareiHEAshourHM. Pseudomonas aeruginosa : arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol.2015Oct;10(10):16831706. https://doi.org/10.2217/fmb.15.4810.2217/fmb.15.4826439366Search in Google Scholar

Ero R, Kumar V, Su W, Gao YG. Ribosome protection by ABC-F proteins – molecular mechanism and potential drug design. Protein Sci. 2019 Apr;28(4):684–693. https://doi.org/10.1002/pro.3589EroRKumarVSuWGaoYG. Ribosome protection by ABC-F proteins – molecular mechanism and potential drug design. Protein Sci.2019Apr;28(4):684693. https://doi.org/10.1002/pro.358910.1002/pro.3589642399630746819Search in Google Scholar

Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, Cohen N, Cervin A, Douglas R, Gevaert P, et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl. 2012 Mar;23(3):3, 1–298.FokkensWJLundVJMullolJBachertCAlobidIBaroodyFCohenNCervinADouglasRGevaertPet al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinol Suppl.2012Mar;23(3):3, 1298.Search in Google Scholar

Fokkens W, Lund V, Mullol J; European Position Paper on Rhinosinusitis and Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl. 2007;20:1–136.FokkensWLundVMullolJ; European Position Paper on Rhinosinusitis and Nasal Polyps group. European position paper on rhinosinusitis and nasal polyps 2007. Rhinol Suppl.2007;20:1136.Search in Google Scholar

Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med. 2016 Oct;6(10):a025395. https://doi.org/10.1101/cshperspect.a025395FyfeCGrossmanTHKersteinKSutcliffeJ. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med.2016Oct;6(10):a025395. https://doi.org/10.1101/cshperspect.a02539510.1101/cshperspect.a025395504668627527699Search in Google Scholar

Golkar T, Zieliński M, Berghuis AM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol. 2018 Aug 20;9:1942. https://doi.org/10.3389/fmicb.2018.01942GolkarTZielińskiMBerghuisAM. Look and Outlook on Enzyme-Mediated Macrolide Resistance. Front Microbiol.2018Aug20;9:1942. https://doi.org/10.3389/fmicb.2018.0194210.3389/fmicb.2018.01942610978630177927Search in Google Scholar

Gomes C, Martínez-Puchol S, Palma N, Horna G, Ruiz-Roldán L, Pons MJ, Ruiz J. Macrolide resistance mechanisms in Enterobacteriaceae : focus on azithromycin. Crit Rev Microbiol. 2017 Jan 02;43(1):1–30. https://doi.org/10.3109/1040841X.2015.1136261GomesCMartínez-PucholSPalmaNHornaGRuiz-RoldánLPonsMJRuizJ. Macrolide resistance mechanisms in Enterobacteriaceae : focus on azithromycin. Crit Rev Microbiol.2017Jan02;43(1):130. https://doi.org/10.3109/1040841X.2015.113626110.3109/1040841X.2015.113626127786586Search in Google Scholar

González-Plaza JJ, Šimatović A, Milaković M, Bielen A, Wichmann F, Udiković-Kolić N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front Microbiol. 2018 Jan 17;8:2675. https://doi.org/10.3389/fmicb.2017.02675González-PlazaJJŠimatovićAMilakovićMBielenAWichmannFUdiković-KolićN. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front Microbiol.2018Jan17;8:2675. https://doi.org/10.3389/fmicb.2017.0267510.3389/fmicb.2017.02675577610929387045Search in Google Scholar

Ho PL, Lo WU, Yeung MK, Lin CH, Chow KH, Ang I, Tong AHY, Bao JYJ, Lok S, Lo JYC. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One. 2011 Mar 21;6(3): e17989. https://doi.org/10.1371/journal.pone.0017989HoPLLoWUYeungMKLinCHChowKHAngITongAHYBaoJYJLokSLoJYC. Complete sequencing of pNDM-HK encoding NDM-1 carbapenemase from a multidrug-resistant Escherichia coli strain isolated in Hong Kong. PLoS One.2011Mar21;6(3): e17989. https://doi.org/10.1371/journal.pone.001798910.1371/journal.pone.0017989306192321445317Search in Google Scholar

Huang X, Deng L, Lu G, He C, Wu P, Xie Z, Aqeel Ashraf M. Research on the treatment of Pseudomonas aeruginosa pneumonia in children by macrolide antibiotics. Open Med. 2015 Jan 1;10(1): 479–482. https://doi.org/10.1515/med-2015-0082HuangXDengLLuGHeCWuPXieZAqeel AshrafM. Research on the treatment of Pseudomonas aeruginosa pneumonia in children by macrolide antibiotics. Open Med.2015Jan1;10(1): 479482. https://doi.org/10.1515/med-2015-008210.1515/med-2015-0082Search in Google Scholar

Janvier F, Otto MP, Jové T, Mille A, Contargyris C, Meaudre E, Brisou P, Plésiat P, Jeannot K. A case of multiple contamination with methylase ArmA-producing pathogens. J Antimicrob Chemother. 2017 Feb;72(2):618–620. https://doi.org/10.1093/jac/dkw418JanvierFOttoMPJovéTMilleAContargyrisCMeaudreEBrisouPPlésiatPJeannotK. A case of multiple contamination with methylase ArmA-producing pathogens. J Antimicrob Chemother.2017Feb;72(2):618620. https://doi.org/10.1093/jac/dkw41810.1093/jac/dkw418Search in Google Scholar

Kadlec K, Brenner Michael G, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Watts JL, Schwarz S. Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother. 2011 May;55(5):2475–2477. https://doi.org/10.1128/AAC.00092-11KadlecKBrenner MichaelGSweeneyMTBrzuszkiewiczELiesegangHDanielRWattsJLSchwarzS. Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother.2011May;55(5):24752477. https://doi.org/10.1128/AAC.00092-1110.1128/AAC.00092-11Search in Google Scholar

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013 Apr 01;30(4):772–780. https://doi.org/10.1093/molbev/mst010KatohKStandleyDM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol.2013Apr01;30(4):772780. https://doi.org/10.1093/molbev/mst01010.1093/molbev/mst010Search in Google Scholar

Kobayashi H. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med. 1995 Dec;99(6) 6A: 26s–30s. https://doi.org/10.1016/S0002-9343(99)80282-4KobayashiH. Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides. Am J Med.1995Dec;99(6) 6A: 26s30s. https://doi.org/10.1016/S0002-9343(99)80282-410.1016/S0002-9343(99)80282-4Search in Google Scholar

Li XZ, Barré N, Poole K. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother. 2000 Dec 1;46(6):885–893. https://doi.org/10.1093/jac/46.6.885LiXZBarréNPooleK. Influence of the MexA-MexB-OprM multidrug efflux system on expression of the MexC-MexD-OprJ and MexE-MexF-OprN multidrug efflux systems in Pseudomonas aeruginosa. J Antimicrob Chemother.2000Dec1;46(6):885893. https://doi.org/10.1093/jac/46.6.88510.1093/jac/46.6.88511102405Search in Google Scholar

Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother. 2003 Sep 01;52(4):572–575. https://doi.org/10.1093/jac/dkg390LiYMimaTKomoriYMoritaYKurodaTMizushimaTTsuchiyaT. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother.2003Sep01;52(4):572575. https://doi.org/10.1093/jac/dkg39010.1093/jac/dkg39012951344Search in Google Scholar

Madhusudhan KT, McLaughlin R, Komori N, Matsumoto H. Identification of a major protein upon phosphate starvation of Pseudomonas aeruginosa PAO1. J Basic Microbiol. 2003 Mar;43(1):36–46. https://doi.org/10.1002/jobm.200390002MadhusudhanKTMcLaughlinRKomoriNMatsumotoH. Identification of a major protein upon phosphate starvation of Pseudomonas aeruginosa PAO1. J Basic Microbiol.2003Mar;43(1):3646. https://doi.org/10.1002/jobm.20039000210.1002/jobm.20039000212596240Search in Google Scholar

Mitsuya Y, Kawai S, Kobayashi H. Influence of macrolides on guanosine diphospho-d-mannose dehydrogenase activity in Pseudomonas biofilm. J Infect Chemother. 2000;6(1):45–50. https://doi.org/10.1007/s101560050049MitsuyaYKawaiSKobayashiH. Influence of macrolides on guanosine diphospho-d-mannose dehydrogenase activity in Pseudomonas biofilm. J Infect Chemother.2000;6(1):4550. https://doi.org/10.1007/s10156005004910.1007/s10156005004911810531Search in Google Scholar

Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, Gniadkowski M, Shimojima M, Kirikae T. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol. 2017 Dec 01;9(12):3238–3245. https://doi.org/10.1093/gbe/evx243Miyoshi-AkiyamaTTadaTOhmagariNViet HungNTharavichitkulPPokhrelBMGniadkowskiMShimojimaMKirikaeT. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol.2017Dec01;9(12):32383245. https://doi.org/10.1093/gbe/evx24310.1093/gbe/evx243572647229202180Search in Google Scholar

Mustafa MH, Khandekar S, Tunney MM, Elborn JS, Kahl BC, Denis O, Plésiat P, Traore H, Tulkens PM, Vanderbist F, et al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur Respir J. 2017 May;49(5):1601847. https://doi.org/10.1183/13993003.01847-2016MustafaMHKhandekarSTunneyMMElbornJSKahlBCDenisOPlésiatPTraoreHTulkensPMVanderbistFet al. Acquired resistance to macrolides in Pseudomonas aeruginosa from cystic fibrosis patients. Eur Respir J.2017May;49(5):1601847. https://doi.org/10.1183/13993003.01847-201610.1183/13993003.01847-201628526799Search in Google Scholar

Ning FG, Zhao XZ, Bian J, Zhang GA. Large-area burns with pandrug-resistant Pseudomonas aeruginosa infection and respiratory failure. Chin Med J (Engl). 2011 Feb;124(3):359–363.NingFGZhaoXZBianJZhangGA. Large-area burns with pandrug-resistant Pseudomonas aeruginosa infection and respiratory failure. Chin Med J (Engl).2011Feb;124(3):359363.Search in Google Scholar

Paterson DL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis. 2006 Sep 01;43 Supplement_2:S43–S48. https://doi.org/10.1086/504476PatersonDL. The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis.2006Sep01;43 Supplement_2:S43S48. https://doi.org/10.1086/50447610.1086/50447616894514Search in Google Scholar

Pereyre S, Goret J, Bébéar C. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front Microbiol. 2016 Jun 22;7:974. https://doi.org/10.3389/fmicb.2016.00974PereyreSGoretJBébéarC. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front Microbiol.2016Jun22;7:974. https://doi.org/10.3389/fmicb.2016.0097410.3389/fmicb.2016.00974491621227446015Search in Google Scholar

Poehlsgaard J, Douthwaite S. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol. 2005 Nov;3(11):870–881. https://doi.org/10.1038/nrmicro1265PoehlsgaardJDouthwaiteS. The bacterial ribosome as a target for antibiotics. Nat Rev Microbiol.2005Nov;3(11):870881. https://doi.org/10.1038/nrmicro126510.1038/nrmicro126516261170Search in Google Scholar

Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamidestreptogramin B resistance determinants. Antimicrob Agents Chemother. 1999 Dec 01;43(12):2823–2830. https://doi.org/10.1128/AAC.43.12.2823RobertsMCSutcliffeJCourvalinPJensenLBRoodJSeppalaH. Nomenclature for macrolide and macrolide-lincosamidestreptogramin B resistance determinants. Antimicrob Agents Chemother.1999Dec01;43(12):28232830. https://doi.org/10.1128/AAC.43.12.282310.1128/AAC.43.12.28238957210582867Search in Google Scholar

Roberts MC. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008 May;282(2):147–159. https://doi.org/10.1111/j.1574-6968.2008.01145.xRobertsMC. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett.2008May;282(2):147159. https://doi.org/10.1111/j.1574-6968.2008.01145.x10.1111/j.1574-6968.2008.01145.x18399991Search in Google Scholar

Schlüter A, Szczepanowski R, Kurz N, Schneiker S, Krahn I, Pühler A. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol. 2007 Mar 15;73(6):1952–1960. https://doi.org/10.1128/AEM.02159-06SchlüterASzczepanowskiRKurzNSchneikerSKrahnIPühlerA. Erythromycin resistance-conferring plasmid pRSB105, isolated from a sewage treatment plant, harbors a new macrolide resistance determinant, an integron-containing Tn402-like element, and a large region of unknown function. Appl Environ Microbiol.2007Mar15;73(6):19521960. https://doi.org/10.1128/AEM.02159-0610.1128/AEM.02159-06182879817261525Search in Google Scholar

Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol. 2009 Sep 01;58(9): 1133–1148. https://doi.org/10.1099/jmm.0.009142-0StratevaTYordanovD. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol.2009Sep01;58(9): 11331148. https://doi.org/10.1099/jmm.0.009142-010.1099/jmm.0.009142-019528173Search in Google Scholar

Tripathy S, Kumar N, Mohanty S, Samanta M, Mandal RN, Maiti NK. Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res. 2007 Sep;162(4):391–396. https://doi.org/10.1016/j.micres.2006.08.005TripathySKumarNMohantySSamantaMMandalRNMaitiNK. Characterisation of Pseudomonas aeruginosa isolated from freshwater culture systems. Microbiol Res.2007Sep;162(4):391396. https://doi.org/10.1016/j.micres.2006.08.00510.1016/j.micres.2006.08.00517008079Search in Google Scholar

Tu D, Blaha G, Moore PB, Steitz TA. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell. 2005 Apr;121(2):257–270. https://doi.org/10.1016/j.cell.2005.02.005TuDBlahaGMoorePBSteitzTA. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell.2005Apr;121(2):257270. https://doi.org/10.1016/j.cell.2005.02.00510.1016/j.cell.2005.02.00515851032Search in Google Scholar

van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011;2:203. https://doi.org/10.3389/fmicb.2011.00203van HoekAHAMMeviusDGuerraBMullanyPRobertsAPAartsHJM. Acquired antibiotic resistance genes: an overview. Front Microbiol.2011;2:203. https://doi.org/10.3389/fmicb.2011.0020310.3389/fmicb.2011.00203320222322046172Search in Google Scholar

Vester B, Douthwaite S. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother. 2001 Jan 01;45(1):1–12. https://doi.org/10.1128/AAC.45.1.1-12.2001VesterBDouthwaiteS. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob Agents Chemother.2001Jan01;45(1):112. https://doi.org/10.1128/AAC.45.1.1-12.200110.1128/AAC.45.1.1-12.20019023211120937Search in Google Scholar

Wang R, Liu H, Zhao X, Li J, Wan K. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae. Int J Antimicrob Agents. 2018 Jan;51(1):140–144. https://doi.org/10.1016/j.ijantimicag.2017.09.009WangRLiuHZhaoXLiJWanK. IncA/C plasmids conferring high azithromycin resistance in vibrio cholerae. Int J Antimicrob Agents.2018Jan;51(1):140144. https://doi.org/10.1016/j.ijantimicag.2017.09.00910.1016/j.ijantimicag.2017.09.00928919196Search in Google Scholar

Wekselman I, Zimmerman E, Davidovich C, Belousoff M, Matzov D, Krupkin M, Rozenberg H, Bashan A, Friedlander G, Kjeldgaard J, et al. The ribosomal protein uL22 modulates the shape of the protein exit tunnel. Structure. 2017 Aug;25(8):1233–1241.e3. https://doi.org/10.1016/j.str.2017.06.004WekselmanIZimmermanEDavidovichCBelousoffMMatzovDKrupkinMRozenbergHBashanAFriedlanderGKjeldgaardJet al. The ribosomal protein uL22 modulates the shape of the protein exit tunnel. Structure.2017Aug;25(8):12331241.e3. https://doi.org/10.1016/j.str.2017.06.00410.1016/j.str.2017.06.00428689968Search in Google Scholar

Wu C, Lin C, Zhu X, Liu H, Zhou W, Lu J, Zhu L, Bao Q, Cheng C, Hu Y. The β-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae. Int J Genomics. 2018 Dec 20;2018:1–12. https://doi.org/10.1155/2018/4989602WuCLinCZhuXLiuHZhouWLuJZhuLBaoQChengCHuY. The β-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae. Int J Genomics.2018Dec20;2018:112. https://doi.org/10.1155/2018/498960210.1155/2018/4989602631711430671441Search in Google Scholar

Zhanel GG, Dueck M, Hoban DJ, Vercaigne LM, Embil JM, Gin AS, Karlowsky JA. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs. 2001;61(4):443–498. https://doi.org/10.2165/00003495-200161040-00003ZhanelGGDueckMHobanDJVercaigneLMEmbilJMGinASKarlowskyJA. Review of macrolides and ketolides: focus on respiratory tract infections. Drugs.2001;61(4):443498. https://doi.org/10.2165/00003495-200161040-0000310.2165/00003495-200161040-0000311324679Search in Google Scholar

Zhao J, Mu X, Zhu Y, Xi L, Xiao Z. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis. FEMS Microbiol Lett. 2015 Sep;362(18):fnv146. https://doi.org/10.1093/femsle/fnv146ZhaoJMuXZhuYXiLXiaoZ. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis. FEMS Microbiol Lett.2015Sep;362(18):fnv146. https://doi.org/10.1093/femsle/fnv14610.1093/femsle/fnv14626316545Search in Google Scholar

Zhu XQ, Wang XM, Li H, Shang YH, Pan YS, Wu CM, Wang Y, Du XD, Shen JZ. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. J Antimicrob Chemother. 2017 Apr 1;72(4):993–997.ZhuXQWangXMLiHShangYHPanYSWuCMWangYDuXDShenJZ. Novel lnu(G) gene conferring resistance to lincomycin by nucleotidylation, located on Tn6260 from Enterococcus faecalis E531. J Antimicrob Chemother.2017Apr1;72(4):993997.10.1093/jac/dkw54928039271Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology