Open Access

Direct Fermentative Hydrogen Production from Cellulose and Starch with Mesophilic Bacterial Consortia


Cite

Abdullah JJ, Greetham D, Pensupa N, Tucker GA, Du C. Optimizing cellulase production from Municipal Solid Waste (MSW) using Solid State Fermentation (SSF). J Fundam Renew Energy Appl. 2016;6(3). https://doi.org/10.4172/2090-4541.1000206 Abdullah JJ Greetham D Pensupa N Tucker GA Du C. Optimizing cellulase production from Municipal Solid Waste (MSW) using Solid State Fermentation (SSF) . J Fundam Renew Energy Appl. 2016 ; 6 ( 3 ). https://doi.org/10.4172/2090-4541.1000206 10.4172/2090-4541.1000206 Search in Google Scholar

Baffert C, Kpebe A, Avilan L, Brugna M. Chapter Three – Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus. In: Poole RK, editor. Advances in Microbial Physiology. Vol. 74. Cambridge (USA): Academic Press; 2019. p. 143–189. Baffert C Kpebe A Avilan L Brugna M. Chapter Three – Hydrogenases and H2 metabolism in sulfate-reducing bacteria of the Desulfovibrio genus . In: Poole RK , editor. Advances in Microbial Physiology . Vol. 74 . Cambridge (USA) : Academic Press ; 2019 . p. 143 189 . 10.1016/bs.ampbs.2019.03.00131126530 Search in Google Scholar

Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrogen Energy. 2008 Aug;33(15):4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069 Baghchehsaraee B Nakhla G Karamanev D Margaritis A Reid G. The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures . Int J Hydrogen Energy. 2008 Aug ; 33 ( 15 ): 4064 4073 . https://doi.org/10.1016/j.ijhydene.2008.05.069 10.1016/j.ijhydene.2008.05.069 Search in Google Scholar

Bao H, Chen C, Jiang L, Liu Y, Shen M, Liu W, Wang A. Optimization of key factors affecting biohydrogen production from microcrystalline cellulose by the co-culture of Clostridium acetobutylicum X9 + Ethanoigenens harbinense B2. RSC Advances. 2016; 6(5):3421–3427. https://doi.org/10.1039/C5RA14192C Bao H Chen C Jiang L Liu Y Shen M Liu W Wang A. Optimization of key factors affecting biohydrogen production from microcrystalline cellulose by the co-culture of Clostridium acetobutylicum X9 + Ethanoigenens harbinense B2 . RSC Advances. 2016 ; 6 ( 5 ): 3421 3427 . https://doi.org/10.1039/C5RA14192C 10.1039/C5RA14192C Search in Google Scholar

Bernardez LA, de Andrade Lima LRP. Improved method for enumerating sulfate-reducing bacteria using optical density. MethodsX. 2015;2 Supplement C:249–255. https://doi.org/10.1016/j.mex.2015.04.006 Bernardez LA de Andrade Lima LRP. Improved method for enumerating sulfate-reducing bacteria using optical density . MethodsX. 2015 ; 2 Supplement C : 249 255 . https://doi.org/10.1016/j.mex.2015.04.006 10.1016/j.mex.2015.04.006448791926150995 Search in Google Scholar

Bundhoo MAZ, Mohee R, Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. J Environ Manage. 2015 Jul;157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006 Bundhoo MAZ Mohee R Hassan MA. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review . J Environ Manage. 2015 Jul ; 157 : 20 48 . https://doi.org/10.1016/j.jenvman.2015.04.006 10.1016/j.jenvman.2015.04.00625881150 Search in Google Scholar

Cai J, Wang G. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge. Int J Green Energy. 2016 Feb 19;13(3):292–297. https://doi.org/10.1080/15435075.2014.893436 Cai J Wang G. Comparison of different pre-treatment methods for enriching hydrogen-producing bacteria from intertidal sludge . Int J Green Energy. 2016 Feb 19 ; 13 ( 3 ): 292 297 . https://doi.org/10.1080/15435075.2014.893436 10.1080/15435075.2014.893436 Search in Google Scholar

Carver SM, Nelson MC, Lepistö R, Yu Z, Tuovinen OH. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60°C. Bioresour Technol. 2012 Jan;104:424–431. https://doi.org/10.1016/j.biortech.2011.11.013 Carver SM Nelson MC Lepistö R Yu Z Tuovinen OH. Hydrogen and volatile fatty acid production during fermentation of cellulosic substrates by a thermophilic consortium at 50 and 60°C . Bioresour Technol. 2012 Jan ; 104 : 424 431 . https://doi.org/10.1016/j.biortech.2011.11.013 10.1016/j.biortech.2011.11.01322133607 Search in Google Scholar

Deng C, Lin R, Cheng J, Murphy JD. Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes? Energy Convers Manag. 2019 Sep;195:738–747. https://doi.org/10.1016/j.enconman.2019.05.044 Deng C Lin R Cheng J Murphy JD. Can acid pre-treatment enhance biohydrogen and biomethane production from grass silage in single-stage and two-stage fermentation processes? Energy Convers Manag. 2019 Sep ; 195 : 738 747 . https://doi.org/10.1016/j.enconman.2019.05.044 10.1016/j.enconman.2019.05.044 Search in Google Scholar

Dinesh GK, Chauhan R, Chakma S. Influence and strategies for enhanced biohydrogen production from food waste. Renew Sustain Energy Rev. 2018 Sep;92:807–822. https://doi.org/10.1016/j.rser.2018.05.009 Dinesh GK Chauhan R Chakma S. Influence and strategies for enhanced biohydrogen production from food waste . Renew Sustain Energy Rev. 2018 Sep ; 92 : 807 822 . https://doi.org/10.1016/j.rser.2018.05.009 10.1016/j.rser.2018.05.009 Search in Google Scholar

Gadow SI, Li YY, Liu Y. Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrogen Energy. 2012 Oct; 37(20):15465–15472. https://doi.org/10.1016/j.ijhydene.2012.04.128 Gadow SI Li YY Liu Y. Effect of temperature on continuous hydrogen production of cellulose . Int J Hydrogen Energy. 2012 Oct ; 37 ( 20 ): 15465 15472 . https://doi.org/10.1016/j.ijhydene.2012.04.128 10.1016/j.ijhydene.2012.04.128 Search in Google Scholar

Gomez-Flores M, Nakhla G, Hafez H. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express. 2017 Dec;7(1):84. https://doi.org/10.1186/s13568-016-0256-2 Gomez-Flores M Nakhla G Hafez H. Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose . AMB Express. 2017 Dec ; 7 ( 1 ): 84 . https://doi.org/10.1186/s13568-016-0256-2 10.1186/s13568-016-0256-2539901528429329 Search in Google Scholar

Gupta M, Velayutham P, Elbeshbishy E, Hafez H, Khafipour E, Derakhshani H, El Naggar MH, Levin DB, Nakhla G. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production. Int J Hydrogen Energy. 2014 Dec;39(36):20958–20967. https://doi.org/10.1016/j.ijhydene.2014.10.079 Gupta M Velayutham P Elbeshbishy E Hafez H Khafipour E Derakhshani H El Naggar MH Levin DB Nakhla G. Co-fermentation of glucose, starch, and cellulose for mesophilic biohydrogen production . Int J Hydrogen Energy. 2014 Dec ; 39 ( 36 ): 20958 20967 . https://doi.org/10.1016/j.ijhydene.2014.10.079 10.1016/j.ijhydene.2014.10.079 Search in Google Scholar

Ho KL, Lee DJ, Su A, Chang JS. Biohydrogen from lignocellulosic feedstock via one-step process. Int J Hydrogen Energy. 2012 Oct;37 (20):15569–15574. https://doi.org/10.1016/j.ijhydene.2012.01.137 Ho KL Lee DJ Su A Chang JS. Biohydrogen from lignocellulosic feedstock via one-step process . Int J Hydrogen Energy. 2012 Oct ; 37 ( 20 ): 15569 15574 . https://doi.org/10.1016/j.ijhydene.2012.01.137 10.1016/j.ijhydene.2012.01.137 Search in Google Scholar

Jiang H, Gadow SI, Tanaka Y, Cheng J, Li YY. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass Bioenergy. 2015 Apr;75:57–64. https://doi.org/10.1016/j.biombioe.2015.02.010 Jiang H Gadow SI Tanaka Y Cheng J Li YY. Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor . Biomass Bioenergy. 2015 Apr ; 75 : 57 64 . https://doi.org/10.1016/j.biombioe.2015.02.010 10.1016/j.biombioe.2015.02.010 Search in Google Scholar

Kumar G, Bakonyi P, Periyasamy S, Kim SH, Nemestóthy N, Bélafi-Bakó K. Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sustain Energy Rev. 2015 Apr;44 Supplement C:728–737. https://doi.org/10.1016/j.rser.2015.01.042 Kumar G Bakonyi P Periyasamy S Kim SH Nemestóthy N Bélafi-Bakó K. Lignocellulose biohydrogen: practical challenges and recent progress . Renew Sustain Energy Rev. 2015 Apr ; 44 Supplement C: 728 737 . https://doi.org/10.1016/j.rser.2015.01.042 10.1016/j.rser.2015.01.042 Search in Google Scholar

Lin C, Chang C, Hung C. Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy. 2008 May;33(10):2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069 Lin C Chang C Hung C. Fermentative hydrogen production from starch using natural mixed cultures . Int J Hydrogen Energy. 2008 May ; 33 ( 10 ): 2445 2453 . https://doi.org/10.1016/j.ijhydene.2008.02.069 10.1016/j.ijhydene.2008.02.069 Search in Google Scholar

Lo YC, Huang CY, Fu TN, Chen CY, Chang JS. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate. Int J Hydrogen Energy. 2009 Aug;34(15):6189–6200. https://doi.org/10.1016/j.ijhydene.2009.05.104 Lo YC Huang CY Fu TN Chen CY Chang JS. Fermentative hydrogen production from hydrolyzed cellulosic feedstock prepared with a thermophilic anaerobic bacterial isolate . Int J Hydrogen Energy. 2009 Aug ; 34 ( 15 ): 6189 6200 . https://doi.org/10.1016/j.ijhydene.2009.05.104 10.1016/j.ijhydene.2009.05.104 Search in Google Scholar

Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M. Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev. 2018 Aug;91: 665–694. https://doi.org/10.1016/j.rser.2018.04.043 Łukajtis R Hołowacz I Kucharska K Glinka M Rybarczyk P Przyjazny A Kamiński M. Hydrogen production from biomass using dark fermentation . Renew Sustain Energy Rev. 2018 Aug ; 91 : 665 694 . https://doi.org/10.1016/j.rser.2018.04.043 10.1016/j.rser.2018.04.043 Search in Google Scholar

Mockaitis G, Bruant G, Guiot SR, Peixoto G, Foresti E, Zaiat M. Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate. Renew Energy. 2020 Jan;145:1388–1398. https://doi.org/10.1016/j.renene.2019.06.134 Mockaitis G Bruant G Guiot SR Peixoto G Foresti E Zaiat M. Acidic and thermal pre-treatments for anaerobic digestion inoculum to improve hydrogen and volatile fatty acid production using xylose as the substrate . Renew Energy. 2020 Jan ; 145 : 1388 1398 . https://doi.org/10.1016/j.renene.2019.06.134 10.1016/j.renene.2019.06.134 Search in Google Scholar

Mohammed A, Abdul-Wahab MF, Hashim M, Omar AH, Md Reba MN, Muhamad Said MF, Soeed K, Alias SA, Smykla J, Abba M, et al. Biohydrogen production by antarctic psychrotolerant Klebsiella sp. ABZ11. Pol J Microbiol. 2018;67(3):283–290. https://doi.org/10.21307/pjm-2018-033 Mohammed A Abdul-Wahab MF Hashim M Omar AH Md Reba MN Muhamad Said MF Soeed K Alias SA Smykla J Abba M , Biohydrogen production by antarctic psychrotolerant Klebsiella sp. ABZ11 . Pol J Microbiol. 2018 ; 67 ( 3 ): 283 290 . https://doi.org/10.21307/pjm-2018-033 10.21307/pjm-2018-033725569030451444 Search in Google Scholar

Nagarajan D, Lee DJ, Chang JS. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production. Int J Hydrogen Energy. 2019 May;44(28):14362–14379. https://doi.org/10.1016/j.ijhydene.2019.03.066 Nagarajan D Lee DJ Chang JS. Recent insights into consolidated bioprocessing for lignocellulosic biohydrogen production . Int J Hydrogen Energy. 2019 May ; 44 ( 28 ): 14362 14379 . https://doi.org/10.1016/j.ijhydene.2019.03.066 10.1016/j.ijhydene.2019.03.066 Search in Google Scholar

Plugge CM, Zhang W, Scholten JCM, Stams AJM. Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol. 2011;2:81. https://doi.org/10.3389/fmicb.2011.00081 Plugge CM Zhang W Scholten JCM Stams AJM. Metabolic flexibility of sulfate-reducing bacteria . Front Microbiol. 2011 ; 2 : 81 . https://doi.org/10.3389/fmicb.2011.00081 10.3389/fmicb.2011.00081311940921734907 Search in Google Scholar

Ravindran A, Adav S, Yang SS. Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil. Renew Energy. 2010 Dec;35(12):2649–2655. https://doi.org/10.1016/j.renene.2010.04.010 Ravindran A Adav S Yang SS. Effect of heat pre-treatment temperature on isolation of hydrogen producing functional consortium from soil . Renew Energy. 2010 Dec ; 35 ( 12 ): 2649 2655 . https://doi.org/10.1016/j.renene.2010.04.010 10.1016/j.renene.2010.04.010 Search in Google Scholar

Ren NQ, Xu JF, Gao LF, Xin L, Qiu J, Su DX. Fermentative biohydrogen production from cellulose by cow dung compost enriched cultures. Int J Hydrogen Energy. 2010 Apr;35(7):2742–2746. https://doi.org/10.1016/j.ijhydene.2009.04.057 Ren NQ Xu JF Gao LF Xin L Qiu J Su DX. Fermentative biohydrogen production from cellulose by cow dung compost enriched cultures . Int J Hydrogen Energy. 2010 Apr ; 35 ( 7 ): 2742 2746 . https://doi.org/10.1016/j.ijhydene.2009.04.057 10.1016/j.ijhydene.2009.04.057 Search in Google Scholar

Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy. 2013 Oct;38(30):13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122 Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge . Int J Hydrogen Energy. 2013 Oct ; 38 ( 30 ): 13172 13191 . https://doi.org/10.1016/j.ijhydene.2013.07.122 10.1016/j.ijhydene.2013.07.122 Search in Google Scholar

Saripan AF, Reungsang A. Thermophilic fermentative biohydrogen production from xylan by anaerobic mixed cultures in elephant dung. Int J Green Energy. 2015 Sep 02;12(9):900–907. https://doi.org/10.1080/15435075.2014.887567 Saripan AF Reungsang A. Thermophilic fermentative biohydrogen production from xylan by anaerobic mixed cultures in elephant dung . Int J Green Energy. 2015 Sep 02 ; 12 ( 9 ): 900 907 . https://doi.org/10.1080/15435075.2014.887567 10.1080/15435075.2014.887567 Search in Google Scholar

Sgobbi A, Nijs W, De Miglio R, Chiodi A, Gargiulo M, Thiel C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system. Int J Hydrogen Energy. 2016 Jan;41(1):19–35. https://doi.org/10.1016/j.ijhydene.2015.09.004 Sgobbi A Nijs W De Miglio R Chiodi A Gargiulo M Thiel C. How far away is hydrogen? Its role in the medium and long-term decarbonisation of the European energy system . Int J Hydrogen Energy. 2016 Jan ; 41 ( 1 ): 19 35 . https://doi.org/10.1016/j.ijhydene.2015.09.004 10.1016/j.ijhydene.2015.09.004 Search in Google Scholar

Shanmugam SR, Lalman JA, Chaganti SR, Heath DD, Lau PCK, Shewa WA. Long term impact of stressing agents on fermentative hydrogen production: effect on the hydrogenase flux and population diversity. Renew Energy. 2016 Apr;88:483–493. https://doi.org/10.1016/j.renene.2015.11.062 Shanmugam SR Lalman JA Chaganti SR Heath DD Lau PCK Shewa WA. Long term impact of stressing agents on fermentative hydrogen production: effect on the hydrogenase flux and population diversity . Renew Energy. 2016 Apr ; 88 : 483 493 . https://doi.org/10.1016/j.renene.2015.11.062 10.1016/j.renene.2015.11.062 Search in Google Scholar

Trchounian K, Sawers RG, Trchounian A. Improving biohydrogen productivity by microbial dark- and photo-fermentations: novel data and future approaches. Renew Sustain Energy Rev. 2017 Dec; 80:1201–1216. https://doi.org/10.1016/j.rser.2017.05.149 Trchounian K Sawers RG Trchounian A. Improving biohydrogen productivity by microbial dark- and photo-fermentations: novel data and future approaches . Renew Sustain Energy Rev. 2017 Dec ; 80 : 1201 1216 . https://doi.org/10.1016/j.rser.2017.05.149 10.1016/j.rser.2017.05.149 Search in Google Scholar

Wang J, Yin Y. Fermentative hydrogen production using various biomass-based materials as feedstock. Renew Sustain Energy Rev. 2018 Sep;92:284–306. https://doi.org/10.1016/j.rser.2018.04.033 Wang J Yin Y. Fermentative hydrogen production using various biomass-based materials as feedstock . Renew Sustain Energy Rev. 2018 Sep ; 92 : 284 306 . https://doi.org/10.1016/j.rser.2018.04.033 10.1016/j.rser.2018.04.033 Search in Google Scholar

Wang J, Yin Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int J Hydrogen Energy. 2017 Feb;42(8):4804–4823. https://doi.org/10.1016/j.ijhydene.2017.01.135 Wang J Yin Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures . Int J Hydrogen Energy. 2017 Feb ; 42 ( 8 ): 4804 4823 . https://doi.org/10.1016/j.ijhydene.2017.01.135 10.1016/j.ijhydene.2017.01.135 Search in Google Scholar

Wang YY, Ai P, Hu CX, Zhang YL. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose. Int J Hydrogen Energy. 2011 Jan;36(1):390–396. https://doi.org/10.1016/j.ijhydene.2010.09.092 Wang YY Ai P Hu CX Zhang YL. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose . Int J Hydrogen Energy. 2011 Jan ; 36 ( 1 ): 390 396 . https://doi.org/10.1016/j.ijhydene.2010.09.092 10.1016/j.ijhydene.2010.09.092 Search in Google Scholar

Yang G, Wang J, Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: performance evaluation and microbial community analysis. Bioresour Technol. 2019 Nov;292:122012. https://doi.org/10.1016/j.biortech.2019.122012 Yang G Wang J Shen Y. Antibiotic fermentation residue for biohydrogen production using different pretreated cultures: performance evaluation and microbial community analysis . Bioresour Technol. 2019 Nov ; 292 : 122012 . https://doi.org/10.1016/j.biortech.2019.122012 10.1016/j.biortech.2019.12201231442834 Search in Google Scholar

Zagrodnik R, Łaniecki M. The effect of pH on cooperation between dark- and photo-fermentative bacteria in a co-culture process for hydrogen production from starch. Int J Hydrogen Energy. 2017 Feb;42(5):2878–2888. https://doi.org/10.1016/j.ijhydene.2016.12.150 Zagrodnik R Łaniecki M. The effect of pH on cooperation between dark- and photo-fermentative bacteria in a co-culture process for hydrogen production from starch . Int J Hydrogen Energy. 2017 Feb ; 42 ( 5 ): 2878 2888 . https://doi.org/10.1016/j.ijhydene.2016.12.150 10.1016/j.ijhydene.2016.12.150 Search in Google Scholar

Zhang JN, Li YH, Zheng HQ, Fan YT, Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11. Bioresour Technol. 2015 Sep;192:60–67. https://doi.org/10.1016/j.biortech.2015.05.034 Zhang JN Li YH Zheng HQ Fan YT Hou HW. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11 . Bioresour Technol. 2015 Sep ; 192 : 60 67 . https://doi.org/10.1016/j.biortech.2015.05.034 10.1016/j.biortech.2015.05.03426011692 Search in Google Scholar

Zhang L, Li Y, Liu X, Ren N, Ding J. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement. RSC Advances. 2019 Apr 09;9(20):11179–11185. https://doi.org/10.1039/C9RA01158G Zhang L Li Y Liu X Ren N Ding J. Lignocellulosic hydrogen production using dark fermentation by Clostridium lentocellum strain Cel10 newly isolated from Ailuropoda melanoleuca excrement . RSC Advances. 2019 Apr 09 ; 9 ( 20 ): 11179 11185 . https://doi.org/10.1039/C9RA01158G 10.1039/C9RA01158G Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology