Open Access

Inhibition of Drug Resistance of Staphylococcus aureus by Efflux Pump Inhibitor and Autolysis Inducer to Strengthen the Antibacterial Activity of β-lactam Drugs


Cite

Anand KB, Agrawal P, Kumar S, Kapila K. Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microbiol. 2009 Jan-Mar; 27(1):27–29.AnandKBAgrawalPKumarSKapilaK.Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian J Med Microbiol.2009Jan-Mar; 27(1):2729.10.1016/S0255-0857(21)01748-5Search in Google Scholar

Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis. 2009 Jan;48(1):1–12. https://doi.org/10.1086/595011BoucherHWTalbotGHBradleyJSEdwardsJEGilbertDRiceLBScheldMSpellbergBBartlettJ.Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis.2009Jan;48(1):112. https://doi.org/10.1086/59501110.1086/59501119035777Search in Google Scholar

Breser ML, Felipe V, Bohl LP, Orellano MS, Isaac P, Conesa A, Rivero VE, Correa SG, Bianco ID, Porporatto C. Chitosan and cloxacillin combination improve antibiotic efficacy against different lifestyle of coagulase-negative Staphylococcus isolates from chronic bovine mastitis. Sci Rep. 2018 Dec;8(1):5081. https://doi.org/10.1038/s41598-018-23521-0BreserMLFelipeVBohlLPOrellanoMSIsaacPConesaARiveroVECorreaSGBiancoIDPorporattoC.Chitosan and cloxacillin combination improve antibiotic efficacy against different lifestyle of coagulase-negative Staphylococcus isolates from chronic bovine mastitis. Sci Rep.2018Dec;8(1):5081. https://doi.org/10.1038/s41598-018-23521-010.1038/s41598-018-23521-0586515529572457Search in Google Scholar

Celenza G, Segatore B, Setacci D, Bellio P, Brisdelli F, Piovano M, Garbarino JA, Nicoletti M, Perilli M, Amicosante G. In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine. 2012 May;19(7):596–602. https://doi.org/10.1016/j.phymed.2012.02.010CelenzaGSegatoreBSetacciDBellioPBrisdelliFPiovanoMGarbarinoJANicolettiMPerilliMAmicosanteG.In vitro antimicrobial activity of pannarin alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus clinical isolates. Phytomedicine.2012May;19(7):596602. https://doi.org/10.1016/j.phymed.2012.02.01010.1016/j.phymed.2012.02.01022459282Search in Google Scholar

Chen K, Huang Y, Song Q, Wu C, Chen X, Zeng L. Drug-resis tance dynamics of Staphylococcus aureus between 2008 and 2014 at a tertiary teaching hospital, Jiangxi Province, China. BMC Infect Dis. 2017 Dec;17(1):97. https://doi.org/10.1186/s12879-016-2172-0ChenKHuangYSongQWuCChenXZengL.Drug-resis tance dynamics of Staphylococcus aureus between 2008 and 2014 at a tertiary teaching hospital, Jiangxi Province, China. BMC Infect Dis.2017Dec;17(1):97. https://doi.org/10.1186/s12879-016-2172-010.1186/s12879-016-2172-0526743428122513Search in Google Scholar

Choi JY, Kim CH, Jeon TJ, Kim BS, Yi CH, Woo KS, Seo YB, Han SJ, Kim KM, Yi DI, et al. Effective MicroPET imaging of brain 5-HT1A receptors in rats with [18F]MeFWAY by suppression of radioligand defluorination. Synapse. 2012 Dec;66(12):1015–1023. https://doi.org/10.1002/syn.21607ChoiJYKimCHJeonTJKimBSYiCHWooKSSeoYBHanSJKimKMYiDI, Effective MicroPET imaging of brain 5-HT1A receptors in rats with [18F]MeFWAY by suppression of radioligand defluorination. Synapse.2012Dec;66(12):10151023. https://doi.org/10.1002/syn.2160710.1002/syn.2160722927318Search in Google Scholar

De UK, Mukherjee R. Expression of cytokines and respiratory burst activity of milk cells in response to Azadirachta indica during bovine mastitis. Trop Anim Health Prod. 2009 Feb;41(2):189–197. https://doi.org/10.1007/s11250-008-9174-xDeUKMukherjeeR.Expression of cytokines and respiratory burst activity of milk cells in response to Azadirachta indica during bovine mastitis. Trop Anim Health Prod.2009Feb;41(2):189197. https://doi.org/10.1007/s11250-008-9174-x10.1007/s11250-008-9174-x18496763Search in Google Scholar

Demon D, Ludwig C, Breyne K, Guédé D, Dörner JC, Froyman R, Meyer E. The intramammary efficacy of first generation cepha lo sporins against Staphylococcus aureus mastitis in mice. Vet Microbiol. 2012 Nov;160(1-2):141–150. https://doi.org/10.1016/j.vetmic.2012.05.017DemonDLudwigCBreyneKGuédéDDörnerJCFroymanRMeyerE.The intramammary efficacy of first generation cepha lo sporins against Staphylococcus aureus mastitis in mice. Vet Microbiol.2012Nov;160(1-2):141150. https://doi.org/10.1016/j.vetmic.2012.05.01710.1016/j.vetmic.2012.05.01722677480Search in Google Scholar

Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov. 2017 Jul;16(7):457–471. https://doi.org/10.1038/nrd.2017.23DickeySWCheungGYCOttoM.Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov.2017Jul;16(7):457471. https://doi.org/10.1038/nrd.2017.2310.1038/nrd.2017.2328337021Search in Google Scholar

Elazar S, Gonen E, Livneh-Kol A, Rosenshine I, Shpigel NY. Neutrophil recruitment in endotoxin-induced murine mastitis is strictly dependent on mammary alveolar macrophages. Vet Res. 2010 Jan;41(1):10. https://doi.org/10.1051/vetres/2009058ElazarSGonenELivneh-KolARosenshineIShpigelNY.Neutrophil recruitment in endotoxin-induced murine mastitis is strictly dependent on mammary alveolar macrophages. Vet Res.2010Jan;41(1):10. https://doi.org/10.1051/vetres/200905810.1051/vetres/2009058277516919828114Search in Google Scholar

Falk SP, Noah JW, Weisblum B. Screen for inducers of autolysis in Bacillus subtilis. Antimicrob Agents Chemother. 2010 Sep 01; 54(9):3723–3729. https://doi.org/10.1128/AAC.01597-09FalkSPNoahJWWeisblumB.Screen for inducers of autolysis in Bacillus subtilis. Antimicrob Agents Chemother.2010Sep 01; 54(9):37233729. https://doi.org/10.1128/AAC.01597-0910.1128/AAC.01597-09Search in Google Scholar

Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017 May 01; 41(3):430–449. https://doi.org/10.1093/femsre/fux007FosterTJ.Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev.2017May 01; 41(3):430449. https://doi.org/10.1093/femsre/fux00710.1093/femsre/fux007Search in Google Scholar

Fu Y, Zhou E, Wei Z, Liang D, Wang W, Wang T, Guo M, Zhang N, Yang Z. Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J. 2014 Jun;281(11):2543–2557. https://doi.org/10.1111/febs.12801FuYZhouEWeiZLiangDWangWWangTGuoMZhangNYangZ.Glycyrrhizin inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. FEBS J.2014Jun;281(11):25432557. https://doi.org/10.1111/febs.1280110.1111/febs.12801Search in Google Scholar

Gao X, Wang T, Zhang Z, Cao Y, Zhang N, Guo M. Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. Int Immunopharmacol. 2015 Jul;27(1):130–137. https://doi.org/10.1016/j.intimp.2015.04.043GaoXWangTZhangZCaoYZhangNGuoM.Brazilin plays an anti-inflammatory role with regulating Toll-like receptor 2 and TLR 2 downstream pathways in Staphylococcus aureus-induced mastitis in mice. Int Immunopharmacol.2015Jul;27(1):130137. https://doi.org/10.1016/j.intimp.2015.04.04310.1016/j.intimp.2015.04.043Search in Google Scholar

Goering RV, Swartzendruber EA, Obradovich AE, Tickler IA, Tenover FC. Stealth MRSA: emergence of resistance in oxacillin-susceptible MRSA due to mecA sequence instability. Antimicrob Agents Chemother. 2019;68(3):e00558-19.GoeringRVSwartzendruberEAObradovichAETicklerIATenoverFC.Stealth MRSA: emergence of resistance in oxacillin-susceptible MRSA due to mecA sequence instability. Antimicrob Agents Chemother.2019;68(3):e00558-19.Search in Google Scholar

Hendricks O, Butterworth TS, Kristiansen JE. The in vitro antimicro bial effect of non-antibiotics and putative inhibitors of efflux pumps on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Antimicrob Agents. 2003 Sep;22(3):262–264. https://doi.org/10.1016/S0924-8579(03)00205-XHendricksOButterworthTSKristiansenJE.The in vitro antimicro bial effect of non-antibiotics and putative inhibitors of efflux pumps on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Antimicrob Agents.2003Sep;22(3):262264. https://doi.org/10.1016/S0924-8579(03)00205-X10.1016/S0924-8579(03)00205-XSearch in Google Scholar

Hu C, Gong R, Guo A, Chen H. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine. 2010 May;28(24):4038–4044. https://doi.org/10.1016/j.vaccine.2010.04.017HuCGongRGuoAChenH.Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine.2010May;28(24):40384044. https://doi.org/10.1016/j.vaccine.2010.04.01710.1016/j.vaccine.2010.04.01720416265Search in Google Scholar

Hu FP, Guo Y, Zhu DM, Wang F, Jiang XF, Xu YC, Zhang XJ, Zhang CX, Ji P, Xie Y, et al. Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect. 2016 Mar;22 Suppl 1:S9–S14. https://doi.org/10.1016/j.cmi.2016.01.001HuFPGuoYZhuDMWangFJiangXFXuYCZhangXJZhangCXJiPXieY, Resistance trends among clinical isolates in China reported from CHINET surveillance of bacterial resistance, 2005–2014. Clin Microbiol Infect.2016Mar;22 Suppl 1:S9S14. https://doi.org/10.1016/j.cmi.2016.01.00110.1016/j.cmi.2016.01.00127000156Search in Google Scholar

Hwang I, Hwang JS, Hwang JH, Choi H, Lee E, Kim Y, Lee DG. Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr Microbiol. 2013 Jan;66(1):56–60. https://doi.org/10.1007/s00284-012-0239-8HwangIHwangJSHwangJHChoiHLeeEKimYLeeDG.Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr Microbiol.2013Jan;66(1):5660. https://doi.org/10.1007/s00284-012-0239-810.1007/s00284-012-0239-823053486Search in Google Scholar

Intrakamhaeng M, Komutarin T, Pimpukdee K, Aengwanich W. Incidence of enterotoxin-producing MRSA in bovine mastitis cases, bulk milk tanks and processing plants in Thailand. J Anim Vet Adv. 2012;11(5):87–93.IntrakamhaengMKomutarinTPimpukdeeKAengwanichW.Incidence of enterotoxin-producing MRSA in bovine mastitis cases, bulk milk tanks and processing plants in Thailand. J Anim Vet Adv.2012;11(5):8793.Search in Google Scholar

Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature. 2010 May;465(7296):346–349. https://doi.org/10.1038/nature09074IwaseTUeharaYShinjiHTajimaASeoHTakadaKAgataTMizunoeY.Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature.2010May;465(7296):346349. https://doi.org/10.1038/nature0907410.1038/nature0907420485435Search in Google Scholar

Kim YN, Kim DW, Jo HS, Shin MJ, Ahn EH, Ryu EJ, Yong JI, Cha HJ, Kim SJ, Yeo HJ, et al. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activa tion in macrophages and TPA-induced ear edema in mice. Toxicol Appl Pharmacol. 2015 Jul;286(2):124–134. https://doi.org/10.1016/j.taap.2015.03.020KimYNKimDWJoHSShinMJAhnEHRyuEJYongJIChaHJKimSJYeoHJ, Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activa tion in macrophages and TPA-induced ear edema in mice. Toxicol Appl Pharmacol.2015Jul;286(2):124134. https://doi.org/10.1016/j.taap.2015.03.02010.1016/j.taap.2015.03.02025818598Search in Google Scholar

Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ. Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother. 2008 Sep 10;62(6):1215–1221. https://doi.org/10.1093/jac/dkn417KlitgaardJKSkovMNKallipolitisBHKolmosHJ.Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother.2008Sep 10;62(6):12151221. https://doi.org/10.1093/jac/dkn41710.1093/jac/dkn417Search in Google Scholar

Kolendi CL. Methicillin-resistant Staphylococcus aureus (MRSA): etiology, at-risk populations and treatment. New York (USA): Nova Science Publishers Inc.; 2010.KolendiCL.Methicillin-resistant Staphylococcus aureus (MRSA): etiology, at-risk populations and treatment.New York (USA): Nova Science Publishers Inc.; 2010.Search in Google Scholar

Koszczol C, Bernardo K, Krönke M, Krut O. Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J Antimicrob Chemother. 2006 Jul 01;58(3):564–574. https://doi.org/10.1093/jac/dkl291KoszczolCBernardoKKrönkeMKrutO.Subinhibitory quinupristin/dalfopristin attenuates virulence of Staphylococcus aureus. J Antimicrob Chemother.2006Jul 01;58(3):564574. https://doi.org/10.1093/jac/dkl29110.1093/jac/dkl291Search in Google Scholar

Lowy FD. Staphylococcus aureus Infections. N Engl J Med. 1998 Aug 20; 339(8):520–532. https://doi.org/10.1056/NEJM199808203390806LowyFD.Staphylococcus aureus Infections. N Engl J Med.1998Aug 20; 339(8):520532. https://doi.org/10.1056/NEJM19980820339080610.1056/NEJM199808203390806Search in Google Scholar

Mascaretti OA. Bacteria versus antibacterial agents: an integrated approach. Washington, D.C. (USA): ASM Press; 2003.MascarettiOA.Bacteria versus antibacterial agents: an integrated approach.Washington, D.C. (USA): ASM Press; 2003.10.1128/9781555817794Search in Google Scholar

Moon JS, Kim HK, Koo HC, Joo YS, Nam H, Park YH, Kang MI. The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol. 2007 Jun 13;75(5):989–998. https://doi.org/10.1007/s00253-007-0898-8MoonJSKimHKKooHCJooYSNamHParkYHKangMI.The antibacterial and immunostimulative effect of chitosan-oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis. Appl Microbiol Biotechnol.2007Jun 13;75(5):989998. https://doi.org/10.1007/s00253-007-0898-810.1007/s00253-007-0898-8Search in Google Scholar

Navon-Venezia S, Ben-Ami R, Carmeli Y. Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis. 2005 Aug;18(4):306–313. https://doi.org/10.1097/01.qco.0000171920.44809.f0Navon-VeneziaSBen-AmiRCarmeliY.Update on Pseudomonas aeruginosa and Acinetobacter baumannii infections in the healthcare setting. Curr Opin Infect Dis.2005Aug;18(4):306313. https://doi.org/10.1097/01.qco.0000171920.44809.f010.1097/01.qco.0000171920.44809.f0Search in Google Scholar

Persson Waller K, Colditz IG, Lun S, Östensson K. Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Res Vet Sci. 2003 Feb;74(1):31–36. https://doi.org/10.1016/S0034-5288(02)00147-9Persson WallerKColditzIGLunSÖstenssonK.Cytokines in mammary lymph and milk during endotoxin-induced bovine mastitis. Res Vet Sci.2003Feb;74(1):3136. https://doi.org/10.1016/S0034-5288(02)00147-910.1016/S0034-5288(02)00147-9Search in Google Scholar

Poulsen MØ, Jacobsen K, Thorsing M, Kristensen NRD, Clasen J, Lillebæk EMS, Skov MN, Kallipolitis BH, Kolmos HJ, Klitgaard JK. Thioridazine potentiates the effect of a beta-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res Microbiol. 2013 Feb;164(2):181–188. https://doi.org/10.1016/j.resmic.2012.10.007PoulsenJacobsenKThorsingMKristensenNRDClasenJLillebækEMSSkovMNKallipolitisBHKolmosHJKlitgaardJK.Thioridazine potentiates the effect of a beta-lactam antibiotic against Staphylococcus aureus independently of mecA expression. Res Microbiol.2013Feb;164(2):181188. https://doi.org/10.1016/j.resmic.2012.10.00710.1016/j.resmic.2012.10.00723089256Search in Google Scholar

Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemo ther. 2016 Jan;71(1):17–26. https://doi.org/10.1093/jac/dkv316PuleCMSampsonSLWarrenRMBlackPAvan HeldenPDVictorTCLouwGE.Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemo ther.2016Jan;71(1):1726. https://doi.org/10.1093/jac/dkv31610.1093/jac/dkv31626472768Search in Google Scholar

Que YA, Haefliger JA, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, et al. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med. 2005 May 16;201(10):1627–1635. https://doi.org/10.1084/jem.20050125QueYAHaefligerJAPirothLFrançoisPWidmerEEntenzaJMSinhaBHerrmannMFrancioliPVaudauxP, Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med.2005May 16;201(10):16271635. https://doi.org/10.1084/jem.2005012510.1084/jem.20050125221293015897276Search in Google Scholar

Rudilla H, Fusté E, Cajal Y, Rabanal F, Vinuesa T, Viñas M. Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules. 2016 Sep 12;21(9):1223–1234. https://doi.org/10.3390/molecules21091223RudillaHFustéECajalYRabanalFVinuesaTViñasM.Synergistic antipseudomonal effects of synthetic peptide AMP38 and carbapenems. Molecules.2016Sep 12;21(9):12231234. https://doi.org/10.3390/molecules2109122310.3390/molecules21091223627345627626405Search in Google Scholar

Tegos G, Mylonakis E. Antimicrobial drug discovery: emerging stra tegies. Wallingford (UK): CABI; 2012.TegosGMylonakisE.Antimicrobial drug discovery: emerging stra tegies.Wallingford (UK): CABI; 2012.10.1079/9781845939434.0000Search in Google Scholar

Trigo G, Dinis M, França A, Bonifácio Andrade E, Gil da Costa RM, Ferreira P, Tavares D. Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis. J Med Microbiol. 2009 Jul 01;58 (7):951–958. https://doi.org/10.1099/jmm.0.007385-0TrigoGDinisMFrançaABonifácio AndradeEGil da CostaRMFerreiraPTavaresD.Leukocyte populations and cytokine expression in the mammary gland in a mouse model of Streptococcus agalactiae mastitis. J Med Microbiol.2009Jul 01;58 (7):951958. https://doi.org/10.1099/jmm.0.007385-010.1099/jmm.0.007385-019498204Search in Google Scholar

Tse BN, Adalja AA, Houchens C, Larsen J, Inglesby TV, Hatchett R. Challenges and opportunities of nontraditional approaches to treating bacterial infections. Clin Infect Dis. 2017 Aug 01; 65(3):495–500. https://doi.org/10.1093/cid/cix320TseBNAdaljaAAHouchensCLarsenJInglesbyTVHatchettR.Challenges and opportunities of nontraditional approaches to treating bacterial infections. Clin Infect Dis.2017Aug 01; 65(3):495500. https://doi.org/10.1093/cid/cix32010.1093/cid/cix320563413628985671Search in Google Scholar

Vermote A, Van Calenbergh S. Small-molecule potentiators for conventional antibiotics against Staphylococcus aureus. ACS Infect Dis. 2017 Nov 10;3(11):780–796. https://doi.org/10.1021/acsinfecdis.7b00084VermoteAVan CalenberghS.Small-molecule potentiators for conventional antibiotics against Staphylococcus aureus. ACS Infect Dis.2017Nov 10;3(11):780796. https://doi.org/10.1021/acsinfecdis.7b0008410.1021/acsinfecdis.7b0008428889735Search in Google Scholar

Wax RG. Bacterial resistance to antimicrobials. Boca Raton (USA): CRC Press; 2008.WaxRG.Bacterial resistance to antimicrobials.Boca Raton (USA): CRC Press; 2008.Search in Google Scholar

Wei W, Dejie L, Xiaojing S, Tiancheng W, Yongguo C, Zhengtao Y, Naisheng Z. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflam mation. 2015 Feb;38(1):16–26. https://doi.org/10.1007/s10753-014-0003-2WeiWDejieLXiaojingSTianchengWYongguoCZhengtaoYNaishengZ.Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model. Inflam mation.2015Feb;38(1):1626. https://doi.org/10.1007/s10753-014-0003-210.1007/s10753-014-0003-225173887Search in Google Scholar

Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthe siol Clin. 2007 1;45(2):27–37. https://doi.org/10.1097/AIA.0b013e318034194eZhangJMAnJ.Cytokines, inflammation, and pain. Int Anesthe siol Clin.20071;45(2):2737. https://doi.org/10.1097/AIA.0b013e318034194e10.1097/AIA.0b013e318034194e278502017426506Search in Google Scholar

Zore GB, Thakre AD, Jadhav S, Karuppayil SM. Terpenoids inhi bit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine. 2011 Oct;18(13):1181–1190. https://doi.org/10.1016/j.phymed.2011.03.008ZoreGBThakreADJadhavSKaruppayilSM.Terpenoids inhi bit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine.2011Oct;18(13):11811190. https://doi.org/10.1016/j.phymed.2011.03.00810.1016/j.phymed.2011.03.00821596542Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology