Cite

Basheer, I. A., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3–31, DOI: 10.1016/S0167-7012(00)00201-3 Search in Google Scholar

Bursać, M., Jevtić, S., Tričković, G., 2021. Application of artificial neural networks for predictions of failure of railway signaling devices. Proceedings of Third International Conference “Transport for Today’s Society”, 14–16.10.2021, Bitola, North Macedonia, Faculty of Technical Sciences Bitola, 194–197. https://ttsconf.org/wp-content/uploads/2022/04/p45.pdf Search in Google Scholar

Ciocan, R., Petulescu, P., Ciobanu, D., Roth, D. J., 2000. The use of the neural networks in the recognition of the austenitic steel types. NDT&E International 33, 85–89, DOI: 10.1016/S0963-8695(99)00032-8 Search in Google Scholar

Dobrzanski, L.A., Sitek, W., 1999, The modelling of hardenability using neural networks. Journal of Materials Processing Technology, 92–93, 8–14, DOI: 10.1016/S0924-0136(99)00174-0 Search in Google Scholar

EN 1990:2002. Eurocode – Basis of structural design. Search in Google Scholar

https://www.phd.eng.br/wp-content/uploads/2015/12/en.1990.2002.pdf Search in Google Scholar

EN 1993-1-1:2005. Eurocode 3 – Design of steel structures – Part 1-1: General rules and rules for buildings Search in Google Scholar

https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.1.2005.pdf Search in Google Scholar

EN 1993-1-2:2005. Eurocode 3 – Design of steel structures – Part 1-2: General rules – structural fire design Search in Google Scholar

https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.2.2005.pdf Search in Google Scholar

EN 1993-1-3:2006. Eurocode 3 – Design of steel structures – Part 1-3: General rules – Supplementary rules for cold-formed members and sheeting Search in Google Scholar

https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.3.2006.pdf Search in Google Scholar

EN 1993-1-4:2006. Eurocode 3 – Design of steel structures – Part 1–4: General rules – Supplementary rules for stainless steels Search in Google Scholar

https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.4.2006.pdf Search in Google Scholar

EN 10088-1:2005. Stainless steels – Part 1: List of stainless steels Search in Google Scholar

https://standards.iteh.ai/catalog/standards/cen/952db42f-8160-4518-8932-c51bc76f8715/en-10088-1-2005 Search in Google Scholar

EN 10088-2:2005. Stainless steels – Part 2: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for general purposes Search in Google Scholar

https://standards.iteh.ai/catalog/standards/cen/5da77ead-c665-4c16-a063-1b086a1543c2/en-10088-2-2005 Search in Google Scholar

EN 10088-3:2005. Stainless steels – Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes. Search in Google Scholar

https://standards.iteh.ai/catalog/standards/cen/4e6c80d2-c72d-42b3-aeae-2564ae23eb38/en-10088-3-2005 Search in Google Scholar

EN 10088-4:2009. Stainless steels – Part 4: Technical delivery conditions for sheet/plate and strip of corrosion resisting steels for construction purposes Search in Google Scholar

https://standards.iteh.ai/catalog/standards/cen/a9506eec-011c-47b3-9313-6ec0bb544a7b/en-10088-4-2009 Search in Google Scholar

EN 10088-5:2009. Stainless steels – Part 5: Technical delivery conditions for bars, rods, wire, sections and bright products of corrosion resisting steels for construction purposes Search in Google Scholar

https://standards.iteh.ai/catalog/standards/cen/affdda76-226f-42d3-b4c7-5d00eba17733/en-10088-5-2009 Search in Google Scholar

Ivković, Dj., Arsić, D. Adamović, D., Nikolić, R., Mitrović, A., Bokuvka, O., 2024. Predicting the yield stress and tensile strength of two stainless steels using artificial intelligence. Proceedings of The 27th International Seminar of Ph.D. students - SEMDOK 2024, 05-07.02.2024, Western Tatras - Zuberec, Slovakia, 57–62. Search in Google Scholar

Jovanović, M., Lazić, V., Arsić, D., 2017. Material Science, Faculty of Engineering. University of Kragujevac, Kragujevac, Serbia, ISBN 978-86-6335-042-7. (in Serbian) Search in Google Scholar

Kim, D., 2023. Text Classification Based on Neural Network Fusion. Technical Journal, 17(3), 359–366, DOI: 10.31803/tg-20221228154330 Search in Google Scholar

Knap, M., Lamut, J., Rozman, A., Falkus, J., 2008. The prediction of hardenability using neuronal networks. Archives of Metallurgy and Materials, 53(3), 761–766, DOI: 10.2478/amm-2014-0021 Search in Google Scholar

Knap, M., Falkus, J., Rozman, A., Konopka, K., Lamut, J., 2014, The Prediction of Hardenability using Neural Networks. Archives of Metallurgy and Materials, 59(1), 133–136, DOI: 10.2478/amm-2014-0021 Search in Google Scholar

Kusiak, J., Kuziak, R., 2002. Modelling of microstructure and mechanical properties of steel using the artificial neural network. Journal of Materials Processing Technology, 127(1), 115–121, DOI: 10.1016/S0924-0136(02)00278-9 Search in Google Scholar

Lee, J-G., Jun, S., Cho, -W., Lee, H., Kim, G. B., Seo, J. B., Kim, N., 2017. Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570–584, DOI: 10.3348/kjr.2017.18.4.570 Search in Google Scholar

Lisjak, D., 2004. Application of various artificial intelligence methods in material selection. Doctoral dissertation, Faculty of Mechanical Engineering, University of Zagreb, Zagreb, Croatia. Search in Google Scholar

Menasri, N., Aimeur, N., 2023. Faults diagnostics of cement draft fan using artificial neural network (ANN). Structural Integrity and Life, 23(1), 23–29. http://divk.inovacionicentar.rs/ivk/ivk23/023-IVK1-2023-NMNA.pdf Search in Google Scholar

Mukherjee, A., Schmauder, S., Ruhle, M., 1995. Artificial neural networks for the prediction of mechanical behavior of metal matrix composites. Acta Metall. Mater. 43(11), 4083–4091, https://edisciplinas.usp.br/pluginfile.php/5791436/mod_resource/content/1/Artigo%204.pdf Search in Google Scholar

Qamar, R., Zardari, B. A., 2023. Artificial Neural Networks: An Overview. Mesopotamian journal of Computer Science, 2023, 130–139, DOI: 10.58496/MJCSC/2023/015 Search in Google Scholar

Sitek, W., Dobrzanski, L. A., Zacłona, J., 2004. The modelling of high-speed steels’ properties using neural networks. Journal of Materials Processing Technology 157–158, 245–249, DOI: 10.1016/j.jmatprotec.2004.09.037 Search in Google Scholar

Sitek, W., Trzaska, J., Gemechu, W. F., 2022. Modelling and Analysis of the Synergistic Alloying Elements Effect on Hardenability of Steel. Archives of foundry engineering, 4, 102–108, DOI: 10.24425/afe.2022.143957 Search in Google Scholar

Sorić, J., Stanić, M., Lesičar, T., 2023. On neural network application in solid mechanics. Transactions of FAMENA, 47(2), 45–66, DOI: 10.21278/TOF.472053023 Search in Google Scholar

Tylek, I., Kuchta, K., 2014. Mechanical properties of structural stainless steels. Technical Transactions Civil Engineering, 4-B(12), 59–80, https://www.ejournals.eu/Czasopismo-Techniczne/2014/Budownictwo-Zeszyt-4-B-(12)-2014/art/5743/ Search in Google Scholar

Varenina, A., Malvić, T. Režić, M., 2018. Improved neural network model of assessment for interpretation of Miocene lithofacies in the Vukovar formation. Northern Croatia, Materials and Geoenvironment, 68(3), 145–156, DOI: 10.2478/rmzmag-2018-0029 Search in Google Scholar