1. bookVolume 27 (2021): Issue 3 (September 2021)
Journal Details
License
Format
Journal
First Published
30 Mar 2018
Publication timeframe
4 times per year
Languages
English
access type Open Access

Enhancing of energetic and economic efficiency of air distribution by swirled-compact air jets

Published Online: 06 Sep 2021
Page range: 171 - 175
Received: 27 Apr 2021
Accepted: 29 Jul 2021
Journal Details
License
Format
Journal
First Published
30 Mar 2018
Publication timeframe
4 times per year
Languages
English
Abstract

The article is devoted to solving the urgent task of increasing the efficiency of air distribution by swirled-compact air jets to ensure the normative parameters of indoor air. The dynamic parameters of the swirled-compact air jet during its leakage in the alternating mode and the formation of a dynamic indoor climate in the room are determined. For improvement of comfortable conditions in the room and design of energy saving circuits of air distribution it is suggested to use swirled-compact air jets, which flow from the inflow and exhaust heat recuperators with heat recovery of the exhaust air. An energy audit of the ventilation system reconstruction with a recuperator using was carried out. The method of taking into account the fact of application of several measures, which cannot be carried out simultaneously, and discount rate dynamics is proposed.

Keywords

JEL Classification

Adamski, M., 2010. Ventilation system with spiral recuperator. Energy and Buildings, 42(5), 674–677. DOI: 10.1016/j.enbuild.2009.11.005. Search in Google Scholar

Adamski, M., 2017. Mini longitudinal flow spiral recuperator. Healthy Buildings Europe 2017. DOI: 10.1051/matecconf/20141801001. Search in Google Scholar

Aedah, M., Mahdi, J., 2018. Energy Audit a step to effective Energy Management. International Journal of Trend in Research and Development, 5(2), 521525. ISSN: 23949333. Search in Google Scholar

Basok, B., Davydenko, B., Farenuyk, G., Goncharuk, S., 2014. Computational Modeling of the Temperature Regime in a Room with a Two-Panel Radiator. Journal of Engineering Physics and Thermophysics, 87(6), 1433-1437. DOI: 10.1007/s10891-014-1147-5. Search in Google Scholar

Bilous, I., Deshko, V., Sukhodub, I., 2016. Building inside air temperature parametric study. Magazine of Civil Engineering, 68(8), 65-75. DOI: 10.5862/MCE.68.7. Search in Google Scholar

Buyak, N., Deshko, V., Sukhodub, I., 2017. Buildings energy use and human thermal comfort according to energy and exergy approach. Energy and Buildings, 146(1), 172-181. DOI: 10.1016/j.enbuild.2017.04.008. Search in Google Scholar

Deshko, V., Buyak, N., 2016. A model of human thermal comfort for analysing the energy performance of buildings. Eastern-European Journal of Enterprise Technologies, 4(8-82), 42-48. DOI: 10.15587/1729-4061.2016.74868. Search in Google Scholar

Dovhaliuk, V., Mileikovskyi, V., 2018. New approach for refined efficiency estimation of air exchange organization. International Journal of Engineering and Technology (UAE), 7(3.2), 591-596, DOI: 10.14419/ijet.v7i3.2.14596. Search in Google Scholar

Gumen, O., Spodyniuk, N., Ulewicz, M., Martyn, Y., 2017. Research of thermal processes in industrial premises with energy-saving technologies of heating. Diagnostyka, 18(2), 43–49. Search in Google Scholar

Hnativ, R., Verbovskiy, O., 2019. Distribution of local velocities in a circular pipe with accelerating fluid flow. Eastern-European Journal of Enterprise Technologies, 2(7-98), 58–63, DOI: 10.15587/1729-4061.2019.162330. Search in Google Scholar

Kapalo, P., Spodyniuk, N., 2018. Effect of the variable air volume on energy consumption – Case study, IOP Conference Series: Materials Science and Engineering, 415(1.012027), DOI: 10.1088/1757-899X/415/1/012027. Search in Google Scholar

Klymchuk, O., Denysova, A., Shramenko, A., Borysenko, K., Ivanova, L., 2019. Theoretical and experimental investigation of the efficiency of the use of heat-accumulating material for heat supply systems. EUREKA, Physics and Engineering, (3), 32-40, DOI: 10.21303/2461-4262.2019.00901. Search in Google Scholar

Lis, A., 2002. The research on microclimate and thermal comfort in nursery school buildings. Archives of Civil Engineering,.48(3), 2002. Search in Google Scholar

Lis, A., Spodyniuk, N., 2019. The quality of the microclimate in educational buildings subjected to thermal modernization. E3S Web of Conferences, 100, 00048, DOI: 10.1051/e3sconf/201910000048. Search in Google Scholar

Lis, P., 2013. The actual and calculated thermal needs of educational buildings. Environmental Engineering IV, 405–416, 2013. Search in Google Scholar

Myroniuk, K., Voznyak, O., Yurkevych, Yu., Gulay, B., 2020. Technical and economic efficiency after the boiler room renewal. Springer, Proceedings of CEE, Advances in Resourse-saving. Technologies and Materials in Civil and Environmental Engineering, 100, 311–318. Search in Google Scholar

Savchenko, O., Voznyak, O., Myroniuk, K., Dovbush, O., 2020. Thermal renewal of industrial buildings gas supply system. Springer, Proceedings of CEE, Advances in Resourse-saving. Technologies and Materials in Civil and Environmental Engineering, 100, 385-392. DOI: 10.1007/978-3-030-57340-9_47. Search in Google Scholar

Selejdak, J., Ulewicz, R., Ingaldi, M., 2014. The evaluation of the use of a device for producing metal elements applied in civil engineering. 23rd International Conference on Metallurgy and Materials, Conference Proceeding, 1882-1888. Search in Google Scholar

Tkachenko, T., Mileikovskyi, V., 2020. Increasing indoor air quality by a natural sanitizing interior. The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development, 02015, 211, 1-8, DOI: 10.1051/e3sconf/202021102015. Search in Google Scholar

Voznyak, O., Spodyniuk, N., Yurkevych, Yu., Sukholova, I., Dovbush, O., 2020. Enhancing efficiency of air distribution by swirled-compact air jets in the mine using the heat utilizators. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5(179), 89-94, DOI: 10.33271/nvngu/2020-5/089. Search in Google Scholar

Zhelykh, V., Venhryn, I., Kozak, K., Shapoval, S., 2020. Solar collectors integrated into transparent facades. Production Engineering Archives, 26(3), 84-87, DOI: 10.30657/pea.2020.26.17. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo