1. bookVolume 7 (2012): Issue 2 (November 2012)
Journal Details
License
Format
Journal
eISSN
1338-7278
ISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English
Open Access

An Energetic Approach for Numerical Analysis of an Interface crack in Shearing Mode

Published Online: 15 Dec 2012
Volume & Issue: Volume 7 (2012) - Issue 2 (November 2012)
Page range: 87 - 98
Journal Details
License
Format
Journal
eISSN
1338-7278
ISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English
Abstract

A mathematical model of a layered structure and initiation and growth of interface cracks are presented. A numerical approach for solving this problem is described, with the emphasis to the analysis of a shearing-mode crack. The model defines a scalar damage variable in the interface and also plastic tangential slip, which increases the fracture toughness in the shearing crack mode. An energetic formulation governing the adhesive damage until it breaks is proposed. The approach is also tested numerically to demonstrate the behaviour of the model and to assess its suitability in a particular physical situation.

Keywords

[1] GRIFFITH, A. (1921). The phenomena of rupture and flow in solids. Philos. Trans. RoyalSoc. London Ser. A. Math. Phys. Eng. Sci., 221, 163-198.Search in Google Scholar

[2] BANKS-SILLS, L., ASHKENAZI, D. (2000). A note on fracture criteria for interface fracture. Int. J. Fract. 103, 177-188.10.1023/A:1007612613338Search in Google Scholar

[3] HUTCHINSON, J.W., SUO, Z. (1992). Mixed mode cracking in layered materials. Advancesin Applied Mechanics, 29, 63-191.10.1016/S0065-2156(08)70164-9Search in Google Scholar

[4] LIECHTI, K., CHAI, Y. (1992) Asymmetric shielding in interfacial fracture under in-plane shear. J. Appl. Mech., 59, 295-304.Search in Google Scholar

[5] TVEEGARD, W., HUTCHINSON J. (1993). The influence of plasticity on mixed mode interface toughness. Int. J. Physics of Solids. 41, 1119-1135.10.1016/0022-5096(93)90057-MSearch in Google Scholar

[6] TÁVARA, L., MANTIČ, V., GRACIANI, E., CANAS, J., PARÍS, F. (2010). Analysis of a crack in a thin adhesive layer between orthotropic materials: An application to composite interlaminar fracture toughness test. CMES - Computer Modeling in Engineering andSciences, 58, 247-270.Search in Google Scholar

[7] TÁVARA, L., MANTIČ, V., GRACIANI, E., PARÍS, F.(2011). BEM analysis of crack onset and propagation along fibre-matrix interface under transverse tension using a linear elasticbrittle interface model. Engineering Analysis with Boundary Elements, 35, 207-222.10.1016/j.enganabound.2010.08.006Search in Google Scholar

[8] BESSON J., CAILLETAUD, G. CHABOCHE, J.L., FOREST, S. (2010). Non-LinearMechanics of Materials. Dordrecht: Springer.10.1007/978-90-481-3356-7Search in Google Scholar

[9] ROUBÍČEK, T., KRUŽÍK, M., ZEMAN, J. (2012). Delamination and adhesive contact models and their mathematical analysis and numerical treatment. In V. Mantič, editor, Mathematical Methods and Models in Composites, Imperial College Press.Search in Google Scholar

[10] ROUBÍČEK, T., MANTIČ, V., PANAGIOTOPOULOS, C. Quasi-static mixed-mode delamination model. Discrete and Cont. Dynam. Syst., accepted.Search in Google Scholar

[11] VODIČKA, R., MANTIČ, V. (2012). An SGBEM implementation of an energetic approach for mixed mode delamination. In: Advances in Boundary Element & Meshless Techniques XIII, 3.-5.9.2012, (319-324), Eastleigh, England: EC, Ltd.Search in Google Scholar

[12] BOURDIN, B., FRANCFORT, A., MARIGO, J.J. (2008). The Variational Approach toFracture, Berlin: Springer.10.1007/978-1-4020-6395-4Search in Google Scholar

[13] ROUBÍČEK, T. (2004). Nonlinear Partial Differential Equations with Applications. Intl.Ser.Numer.Math 153. Basel: Birkhäuser.Search in Google Scholar

[14] MIELKE, A., THEIL, F. (2004). Mathematical model for rate-independent phase transformations with hysteresis. Nonl. Diff. Eqns. Appl., 11, 151-189.Search in Google Scholar

[15] BOURDIN, B., FRANCFORT, A., MARIGO, J.J. (2000). Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48, 797-826.10.1016/S0022-5096(99)00028-9Search in Google Scholar

[16] DOSTÁL, Z. (2009) Optimal Quadratic Programming Algorithms, Springer Optimization andIts Applications, 23. Berlin: Springer.10.1007/978-0-387-84806-8_2Search in Google Scholar

[17] BAŽANT, Z., JIRÁSEK, M. (2002) Nonlocal integral formulations of plasticity and damage: Survey of progress. J. Engrg. Mech., 128(11), 1119-1149.10.1061/(ASCE)0733-9399(2002)128:11(1119)Search in Google Scholar

[18] MATLAB (2009). V 7.9.0.529. The Math Works, Inc.Search in Google Scholar

[19] BARTELS, S., KRUŽÍK, M. (2011). An efficient approach to the numerical solution of rate-independent problems with non-convex energies. Multiscale Model. Simul. 9(3), 1276-1300.10.1137/110821718Search in Google Scholar

[20] TÁVARA, L., MANTIČ, V., GRACIANI, E., PARÍS, F. (2011). BEM analysis of crack onset and propagation along fibre-matrix interface under transverse tension using a linear elastic brittle interface model. Eng. Anal. Bound. Elem., 35, 207-222.10.1016/j.enganabound.2010.08.006Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo