Open Access

Determination of the Absolute Number of Transgene Copies in CMVFUT Transgenic Pigs


Cite

Ballester M., Castelló A., Ibáñez E., Sánchez A., Folch J. M. (2004). Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals. Biotechniques, 37: 610-613.Search in Google Scholar

Costa C., Zhao L., Burton W. V., Bondioli K. R., Williams B. L., Hoagland T. A., Ditullio P. A., Ebert K. M., Fodor W. L. (1999). Expression of the human alpha 1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J., 13: 1762-1773.Search in Google Scholar

Folger K. R., Thomas K., Capecchi M. R. (1985). Nonreciprocal exchanges of information between DNA duplexes coinjected into mammalian cell nuclei. Mol. Cell. Biol., 5: 59-69.Search in Google Scholar

Folger K. R., Wong E. A., Wahl G., Capecchi M. R. (1982). Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol. Cell. Biol., 2: 372-1387.Search in Google Scholar

Galili U., Shohet S. B., Kobrin E., Stults C. L., Macher B. A. (1988). Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem., 263: 17755-17762.Search in Google Scholar

Galili U., Swanson K. (1991). Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Nat. Acad. Sci. U. S. A., 88: 7401-7404.Search in Google Scholar

Ingham D. J., Beer S., Money S., Hansen G. (2001). Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques, 31: 132-140.Search in Google Scholar

Jura J., Słomski R., Smorąg Z., Gajda B., Wieczorek J., Lipiński D., Kalak R., Juzwa W., Zeyland J. (2004). Production of transgenic pigs suitable for xenotransplantation with the use of standard DNA microinjection. Ann. Anim. Sci., 4, 2: 321-327.Search in Google Scholar

Keshet I., Lieman-Hurwitz J., Cedar H. (1986). DNA methylation affects the formation of active chromatin. Cell, 44: 535-543.Search in Google Scholar

Lipiński D., Jura J., Zeyland J., Juzwa W., Mały E., Kalak R., Bochenek M., Pławski A., Szalata M., Smorąg Z., Słomski R. (2010). Production of transgenic pigs expressing human α1,2-fucosyltransferase to avoid humoral xenograft rejection. Med. Wet., 66: 316-322.Search in Google Scholar

Milot E., Strouboulis J., Trimborn T., Wijgerde M., de Boer E., Langeveld A., Tan-Un K., Vergeer W., Yannoutsos N., Grosveld F., Fraser P. (1996). Heterochromatin effects in the frequency and duration of LCR-mediated gene transcription. Cell, 87: 105-114.Search in Google Scholar

Muller K., Heller H., Doerfler W. (2001). Foreign DNA integration. J. Biol. Chem., 276: 14271-14278.Search in Google Scholar

Sandrin M. S., McKenzie I. F. (1994). Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol. Rev., 141: 169-190.Search in Google Scholar

Sharma A., Okabe J., Birch P., McClellan S. B., Martin M. J., Platt J. L., Logan J. S. (1996). Reduction in the level of Gal(alpha1,3)Gal in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase. Proc. Nat. Acad. Sci. U. S. A., 93: 7190-7195.Search in Google Scholar

Shitara H., Sato A., Hayashi J., Mizushima N., Yonekawa H., Taya C. (2004). Simple method of zygosity identification in transgenic mice by real-time quantitative PCR. Transgenic Res., 13: 191-194.Search in Google Scholar

Tesson L., Heslan J. M., Ménoret S., Anegon I. (2002). Rapid and accurate determination of zygosity in transgenic animals by real-time quantitative PCR. Transgenic Res., 11: 43-48.Search in Google Scholar

ISSN:
1642-3402
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine