1. bookVolume 62 (2011): Issue 2 (March 2011)
Journal Details
License
Format
Journal
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
access type Open Access

Epitaxial Growth of GaP/InxGa1-xP (xIn ≥ 0.27) Virtual Substrate for Optoelectronic Applications

Journal Details
License
Format
Journal
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

Compositionally graded epitaxial semiconductor buffer layers are prepared with the aim of using them as a virtual substrate for following growth of heterostructures with the lattice parameter different from that of the substrates available on market (GaAs, GaP, InP or InAs). In this paper we report on the preparation of the step graded InxGa1-xP buffer layers on the GaP substrate. The final InxGa1-xP composition xIn was chosen to be at least 0.27. At this composition the InxGa1-xP band-gap structure converts from the indirect to the direct one and the material of such composition is suitable for application in light emitting diode structures. Our task was to design a set of layers with graded composition (graded buffer layer) and to optimize growth parameters with the aim to prepare strain relaxed template of quality suitable for the subsequent epitaxial growth.

Keywords

MUELLER-MACH, R.—MUELLER, G. O.—KRAMES, M. R.—SHCHEKIN, O. B.—SCHMIDT, P. J.—BECHTEL, H.—CHEN, C.-H.—STEIGELMANN, O.: Phys. Stat. Sol. RRL 3 (2009), 215.Search in Google Scholar

GESSMANN, T.—SCHUBERT, E. F.: J. Appl. Phys. 95 (1994), 2203.Search in Google Scholar

STRINGFELLOW, G. B.: in High Brightness Light Emitting Diodes, Academic Press, 1997, p. 1.Search in Google Scholar

BULSARA, M. T.—LEITZ, C.—FITZGERALD, E. A.: Appl. Phys. Lett. 72 (1998), 1608.Search in Google Scholar

FITZGERALD, E. A.—XIE, Y.-H.—GREEN, M. L.—BRASEN, D.—KORTAN, A. R.—MICHEL, J.—MII, Y.-J.—WEIR, B. E.: Appl. Phys. Lett. 59 (1991), 811.Search in Google Scholar

KIM, A. Y.—McCULLOUGH, W. S.—FITZGERALD, E. A.: J. Vac. Sci. Technol. B 17 (1999), 1485.Search in Google Scholar

HASENÖHRL, S.—NOVÁK, J.—VÁVRA, I. ŠATKA, A.: J. Cryst. Growth 272 (2004), 633.Search in Google Scholar

GREGUŠOVÁ, D.—KUČERA, M.—HASENÖHRL, S.—VÁVRA, I.—ŠTRICHOVANEC, P.—NOVÁK, J.: Phys. Stat. Sol. C 4 (2007), 1419.Search in Google Scholar

EREMENKO, V.—GONZÁLEZ, L.—GONZÁLEZ, Y.—VDOVIN, V.—VAZQUEZ, L.—ARAGÓN, G.—HERRERA, M.—BRIONES, F.: Mat. Sci. Eng. B 9192 (2002), 269.Search in Google Scholar

FOLLSTAEDT, D. M.—SCHNEIDER, Jr., R. P.—JONES, E. D.: J. Appl. Phys. 77 (1995), 3077.Search in Google Scholar

PRIESTER, C.—GRENET, G.: J. Vac. Sci. Technol. B 16 (1998), 2421.Search in Google Scholar

GUYER, J. E.—VOORHEES, P. W.: Phys. Rev. Lett. 74 (1995), 4031.Search in Google Scholar

WALLART, X.—PRIESTER, C.—DERESMES, D.—MOLLOT, F.: Appl. Phys. Lett. 77 (2000), 253.Search in Google Scholar

HSU, T. C.—HSU, Y.—STRINGFELLOW, G. B.: J. Cryst. Growth 193 (1998), 1.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo