Open Access

Experimental and Theoretical Investigations of Fatigue Crack Growth in D16 Alloy


Cite

Peterson, R. (1974). Stress concetration factors. New York: Wiley.Search in Google Scholar

Hertzberg, R. W. (1983). Deformation and Fracture Mechanics of Engineering Materials (2nd ed.). New York/Chichester/Brisbane/Toronto/Singapore: John Wiley & Sons.Search in Google Scholar

Pilkey, W. (1997). Peterson's stress concentration factors (2nd ed.). New York: John Wiley & Sons.10.1002/9780470172674Search in Google Scholar

Pluvinage, G., & Gjonaj, M. (2000). Notch Effects in Fatigue and Fracture. NATO Science Series II: Mathematics, Physics and Chemistry, 11. Dordrecht/Boston/London: Kluwer Academic Publishers.Search in Google Scholar

Andrews, E. W., & Gibson, L. J. (2001). The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Materialia, 49, 2975-2979.10.1016/S1359-6454(01)00203-8Search in Google Scholar

Strandberg, M. (2002). Fracture at V-notches with contained plasticity. Engineering Fracture Mechanics, 69, 403-415.10.1016/S0013-7944(01)00079-0Search in Google Scholar

Troyani, N., Hernandez, S. I., Villarroel, G., Polonais, Y., & Gomes, C. (2004). Theoretical stress concentration factors for short flat bars with opposite U-shaped notches subjected to inplane bending. International Journal of Fatigue, 26, 1303-1310.10.1016/j.ijfatigue.2004.04.007Search in Google Scholar

Tlilan, H. M., Yousuke S., & Tamotsu, M. (2005). Effect of notch depth on strain-concentration factor of notched cylindrical bars under static tension. European Journal of Mechanics A/Solids. 24, 406-416.10.1016/j.euromechsol.2005.02.001Search in Google Scholar

Spencer, K., Corbin, S. F., & Lloyd, D. J. (2002). Notch fracture behaviour of 5754 automotive aluminium alloys. Materials Science & Engineering. A 332, 81-90.10.1016/S0921-5093(01)01708-7Search in Google Scholar

Tokaji, K. (2005). Notch fatigue behaviour in a Sb-modified permanent-mold cast A356-T6 aluminium alloy. Materials Science & Engineering. A 396, 333-340.10.1016/j.msea.2005.01.028Search in Google Scholar

Caleyo, F., Gonzalez, J. L., & Hallen, J. M. (2002). A study on the reliability assessment methodology for pipelines with active corrosion defects. International Journal of Pressure Vessels and Piping. 79, 77-86.10.1016/S0308-0161(01)00124-7Search in Google Scholar

Ahammed, M. (1998). Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects. International Journal of Pressure Vessels and Piping 75, 321-329.10.1016/S0308-0161(98)00006-4Search in Google Scholar

Ahammed, M. (1997). Prediction of remaining strength of corroded pressurized pipelines. International Journal of Pressure Vessels and Piping. 71, 213-217.10.1016/S0308-0161(96)00081-6Search in Google Scholar

Ahammed, M., & Melchers, R. E. (1997). Probabilistic analysis of underground pipelines subject to combined stress and corrosion. Engineering Structures, 19(12), 988-994.10.1016/S0141-0296(97)00043-6Search in Google Scholar

Kocańda, D., Kocańda, S., Miller, K. J., & Tomaszek, H. (1999). Experimental and theoretical investigations of short fatigue crack growth in laser hardened medium carbon steel. Engineering Against Fatigue (pp. 501-507). Rotterdam-Brookfield: A.A. Balkema.Search in Google Scholar

Kocańda, D., Kocańda, S., & Tomaszek, H. (1999). Probabilistic approach to the short and long fatigue crack growth description in a notched member, In Fatigue'99: International Fatigue Congress, Beijing, 4/1999, (pp. 2673-2678), China, Cradley Heath: EMAS, Higher Education Press Beijing.Search in Google Scholar

American Society for Testing and Materials. (1976). Dowling N. E. & Begley J. A. (Eds.). In Mechanics of crack growth. ASTM STP 590, pp. 82-103. West Conshonocken, PA: ASTM International.Search in Google Scholar

ISSN:
2081-7738
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Engineering, Introductions and Overviews, other