1. bookVolume 11 (2011): Issue 1 (February 2011)
Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Synthesis and Transport Properties of Nanostructured VO2 by Mechanochemical Processing

Journal Details
License
Format
Journal
eISSN
1335-8871
First Published
07 Mar 2008
Publication timeframe
6 times per year
Languages
English
Synthesis and Transport Properties of Nanostructured VO<sub>2</sub> by Mechanochemical Processing

The high-energy milling of the V2O5-Na2SO3 mixture in the range of 5 - 100 min leads to a synthesis of monoclinic VO2. The starting and minimum (at 220 °C) values of electric resistance R of the 100 min milled and pressed VO2-Na2SO4 mixture were 13.9 MΩ and 91.5 kΩ, respectively. The subsequent washing of the as-milled powder partially leads to the development of VO2 nanostructures with tube-like, sheet-like and rod-like morphology, besides VO2 (B) belt-like morphology, depending on the milling times.

Keywords

Lopez, R., Haynes, T. E., Boatner, L. A., Feldman, L. C., Haglund Jr., R. F. (2002). Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B, 65 (22), 2241131-2241135.Search in Google Scholar

Wang, Y., Zhang, Z. (2009). Synthesis and field emission property of VO2 nanorods with a body-centered-cubic structure. Physica E, 41 (4), 548-551.10.1016/j.physe.2008.10.006Search in Google Scholar

Guinneton, F., Sauques, L., Valmalette, J. C., Cros, F., Gavarri, J. R. (2001). Comparative study between nanocrystalline powder and thin film of vanadium dioxide: Electrical and infrared properties. J. Phys. Chem. Solids, 62 (7), 1229-1238.10.1016/S0022-3697(01)00013-0Search in Google Scholar

Eyert, V. (2002). The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys., 11 (9), 650-702.10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-KSearch in Google Scholar

Wang, Y., Zhang, Z., Zhu, Y., Li, Z., Vajtai, R., Ci, L., Ajayan, P. M. (2008). Nanostructured VO2 photocatalysts for hydrogen production. ACS Nano, 2 (7), 1492-1496.10.1021/nn800223sSearch in Google Scholar

Bai, H., Cortie, M. B., Maaroof, A. I., Dowd, A., Kealley, C., Smith, G. B. (2009). The preparation of a plasmonically resonant VO2 thermochromic pigment. Nanotechnology, 20 (8), 085607.10.1088/0957-4484/20/8/085607Search in Google Scholar

Ding, N., Feng, X., Liu, S., Xu, J., Fang, X., Lieberwirth, I., Chen, C. (2009). High capacity and excellent cyclability of vanadium (IV) oxide in lithium battery applications. Electrochem. Commun., 11 (3), 538-541.10.1016/j.elecom.2008.12.017Search in Google Scholar

Liu, J., Li, Q., Wang, T., Yu, D., Li, Y. (2004). Metastable vanadium dioxide nanobelts: Hydrothermal synthesis, electrical transport, and magnetic properties. Angew. Chem. Int. Ed., 43 (38), 5048-5052.10.1002/anie.200460104Search in Google Scholar

Chen, W., Peng, J., Mai, L., Yu, H., Qi, Y. (2004). Synthesis and characterization of novel vanadium dioxide nanorods. Solid State Commun., 132 (8), 513-516.10.1016/j.ssc.2004.09.013Search in Google Scholar

Kong, L., Liu, Z., Shao, M., Xie, Q., Yu, W., Qian, Y. (2004). Controlled synthesis of single-crystal VOx·nH2O nanoribbons via a hydrothermal reduction method. J. Solid State Chem., 177 (3), 690-695.10.1016/j.jssc.2003.08.035Search in Google Scholar

Li, G., Chao, K., Peng, H., Chen, K., Zhang, Z. (2007). Low-valent vanadium oxide nanostructures with controlled crystal structures and morphologies. Inorg. Chem., 46 (14), 5787-5790.10.1021/ic070339nSearch in Google Scholar

Wei, M., Sugihara, H., Honma, I., Ichihara, M., Zhou, H. (2005). A new metastable phase of crystallized V2O4·0.25H2O nanowires: Synthesis and electro-chemical measurements. Adv. Mater., 17 (24), 2964-2969.Search in Google Scholar

Bai, L., Gao, Y., Li, W., Luo, H., Jin, P. (2008). Synthesis and atmospheric instability of well crystallized rod-shaped V2O4·2H2O powders prepared in an aqueous solution. J. Ceram. Soc. Jpn., 116 (1351), 395-399.Search in Google Scholar

Wei, M., Qi, Z., Ichihara, M., Hirabayashi, M., Honma, I., Zhou, H. (2006). Synthesis of single-crystal vanadium dioxide nanosheets by the hydrothermal process. J. Crys. Growth., 296 (1), 1-5.10.1016/j.jcrysgro.2006.08.014Search in Google Scholar

Whittaker, L., Zhang, H., Banerjee, S. (2009). VO2 nanosheets exhibiting a well-defined metal-insulator phase transition. J. Mater. Chem., 19 (19), 2968-2974.10.1039/b823332bSearch in Google Scholar

Godočíková, E., Baláž, P., Gock, E., Choi, W. S., Kim, B. S. (2006). Mechanochemical synthesis of the nanocrystalline semiconductors in an industrial mill. Powder Technol., 164 (3), 147-152.10.1016/j.powtec.2006.03.021Search in Google Scholar

Dodd, A. C., McCormick, P. G. (2001). Synthesis of nanoparticulate zirconia by mechanochemical processing. Scr. Mater., 44 (8-9), 1725-1729.10.1016/S1359-6462(01)00792-8Search in Google Scholar

Billik, P., Čaplovičová, M., Janata, J., Fajnor, V.Š (2008). Direct synthesis of nanocrystalline, spherical α-Mn2O3 particles by mechanochemical reduction. Mater. Lett., 62 (6-7), 1052-1054.10.1016/j.matlet.2007.07.050Search in Google Scholar

Billik, P., Čaplovičová, M. (2009). Synthesis of nanocrystalline SnO2 powder from SnCl4 by mecha-nochemical processing. Powder Technol., 191 (3), 235-239.10.1016/j.powtec.2008.10.017Search in Google Scholar

Trudeau, M. L., Schulz, R., Dussault, D., Van Neste, A. (1990). Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process? Phys. Rev. Lett., 64 (1), 99-102.10.1103/PhysRevLett.64.99Search in Google Scholar

Koch, C. C. (1997). Synthesis of nanostructured materials by mechanical milling: Problems and opportunities. Nanostruc. Mater., 9 (1-8), 13-22.10.1016/S0965-9773(97)00014-7Search in Google Scholar

Huang, B., Perez, R. J., Crawford, P. J., Sharif, A. A., Nutt, S. R., Lavernia, E. J. (1995). Mechanically induced crystallization of metglas Fe78B13Si9 during cryogenic high energy ball milling. Nanostruct. Mater., 5 (5), 545-553.10.1016/0965-9773(95)00261-CSearch in Google Scholar

Wang, X., Li, Y. (2003). Synthesis and formation mechanism of manganese dioxide nanowires/nano-rods. Chem.-Eur. J., 9 (1), 300-306.10.1002/chem.20039002412506386Search in Google Scholar

Hagrman, D., Zubieta, J., Warren, C. J., Meyer, L. M., Treacy, M. M. J., Haushalter, R. C. (1998) A new polymorph of VO2 prepared by soft chemical methods. J. Solid State Chem., 138 (1), 178-182.10.1006/jssc.1997.7575Search in Google Scholar

Wei, M., Konishi, Y., Zhou, H., Sugihara, H., Arakawa, H. (2004). A simple method to synthesize nanowires titanium dioxide from layered titanate particles. Chem. Phys. Lett., 400 (1-3), 231-234.10.1016/j.cplett.2004.10.114Search in Google Scholar

Manivannan, V., Parhi, P., Howard, J. (2008). Mechanochemical metathesis synthesis and characterrization of nano-structured MnV2O6·xH2O (x = 2, 4). J. Cryst. Growth, 310 (11), 2793-2799.10.1016/j.jcrysgro.2008.02.021Search in Google Scholar

Liu, X., Fu, S., Huang, C. (2005). Synthesis, characterization and magnetic properties of β-MnO2 nanorods. Powder Technol., 154 (2-3), 120-124.10.1016/j.powtec.2005.05.004Search in Google Scholar

Cao, J., Wu, J. (2011). Strain effects in low-dimensional transition metal oxides. Mater. Sci. Eng.-Reports, 71 (2-4), 35-52.10.1016/j.mser.2010.08.001Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo