Open Access

Kinetics studies and mechanism evolution of the epoxidation of styrene over nanoporous Au doped TS-1


Cite

Taramaso, M., Pergo, G. & Notari, B. (1983). Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. U. S. Patent No. 4,410,501.Search in Google Scholar

Thangaraja, A., Kumar, R., Mirajker, S. P. & Ratnasamy, P. (1991). Catalytic properties of crystalline titanium silicalites I. Synthesis and characterization of titanium-rich zeolites with MFI structure. J. Catal. 130, 1-8. DOI:10.1016/0021-9517(91)90086-J.10.1016/0021-9517(91)90086-JSearch in Google Scholar

Reddy, J. S., Kumar, R. & Ratnasamy, P. (1990). Titanium Silicalite-2: Synthesis, Characterization and Catalytic Properties. Appl. Catal. 58 L1.10.1016/S0166-9834(00)82273-3Search in Google Scholar

Reddy, J. S. & Kumar, R (1992). Crystallization kinetics of a new titanium silicate with MEL structure (TS-2). Zeolites, 12, 95-100. DOI:10.1016/0144-2449(92)90017-J.10.1016/0144-2449(92)90017-JSearch in Google Scholar

Huybrechts, D.R, Bruycker, L. D. & Jacobs, P. A. (1990). Oxyfunctionalization of alkanes with hydrogen peroxide on titanium silicalite. Nature, 345, 240-242. DOI:10.1038/345240a0.10.1038/345240a0Search in Google Scholar

Reddy, R. S., Reddy, J. S., Kumar, R., Kumar, P. (1992). Sulfoxidation of thioethers using titanium silicate molecular sieve catalysts. J. Chem. Soc. Chem. Commun. 2, 84-85. DOI: 10.1039/C39920000084.10.1039/c39920000084Search in Google Scholar

Kumar, S. B., Mirajkar, S. P., Govind, C. G., Kumar, P. & Kumar, R. (1995). Epoxidation of Styrene over a Titanium Silicate Molecular Sieve TS1 Using Dilute H2O2 as Oxidizing Agent. J. Catal. 156, 163-166. DOI:10.1006/jcat.1995.1242.10.1006/jcat.1995.1242Search in Google Scholar

Laha, S. C., Kumar, R. (2001). Selective Epoxidation of Styrene to Styrene Oxide over TS-1 Using Urea-Hydrogen Peroxide as Oxidizing Agent. J. Catal. 204, 64-70. DOI:10.1006/jcat.2001.3352.10.1006/jcat.2001.3352Search in Google Scholar

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. & Delmon, B. (1993). Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 144, 175-192. DOI:10.1006/jcat.1993.1322.10.1006/jcat.1993.1322Search in Google Scholar

Prati, L. & Porta, F. (2005). Oxidation of alcohols and sugars using Au/C catalysts: Part 1. Alcohols. Appl. Catal. A: General. 291, 199-203. DOI:10.1016/j.apcata.2004.11.050.10.1016/j.apcata.2004.11.050Search in Google Scholar

Nijhuis, T. A., Huizinga, B. T. & Makkee, J. A. (1999). Direct Epoxidation of Propene Using Gold Dispersed on TS-1 and Other Titanium-Containing Supports. Ind. Eng. Chem. Res. 38, 884-891. DOI: 10.1021/ie980494x.10.1021/ie980494xSearch in Google Scholar

Yadav, G. D. & Pujari, A. (2000). Epoxidation of Styrene to Styrene Oxide: Synergism of Heteropoly Acid and Phase-Transfer Catalyst under Ishii-Venturello Mechanism. Org. Proc. Res. & Dev. 4, 88-93. DOI: 10.1021/op990055p.10.1021/op990055pSearch in Google Scholar

Singh, U. K. & Vannice, M. A. (2001). Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts-a review, Applied Catalysis A: Gen. 213, 1-24. DOI:10.1016/S0926-860X(00)00885-110.1016/S0926-860X(00)00885-1Search in Google Scholar

Mars P., Van Krevelene D. W (1954). Oxidation carried out by means of vanadium oxide catalysts. Spec. suppl. to Chem. Eng, Sci., 3, 41-.Search in Google Scholar

Shetti, V. N., Manikandan, P., Srivinas, D. & Ratnasamy, P. (2003). Reactive oxygen species in epoxidation reactions over titanosilicate molecular sieves. J. Catal. 216, 461-467. DOI:10.1016/S0021-9517(02)00119-7.10.1016/S0021-9517(02)00119-7Search in Google Scholar

Khouw, C.B, Dartt, C. B., Labinger, J. A. & Davis, M. E. (1994). Studies on the Catalytic-Oxidation of Alkanes and Alkenes by Titanium Silicates. J. Catal. 149, 195-205. DOI:10.1006/jcat.1994.1285.10.1006/jcat.1994.1285Search in Google Scholar

Lamberti, C., Bordiga, S., Zecchina, A., Artioli, G., Marra, G. & Spano, G. (2001). Ti Location in the MFI Framework of Ti-Silicalite-1: A Neutron Powder Diffraction Study. J. Am. Chem. Soc., 123, 2204-2212. DOI: 10.1021/ja003657t.10.1021/ja003657t11456866Search in Google Scholar

Wells, D. H., Delgass, W. N. & Thomson, K. T. (2004). Evidence of Defect-Promoted Reactivity for Epoxidation of Propylene in Titanosilicate (TS-1) Catalysts: A DFT Study. J. Am. Chem. Soc. 126, 2956-2962. DOI: 10.1021/ja037741v.10.1021/ja037741v14995213Search in Google Scholar

Joshi, A. M., Delgass, W. N. & Thomson, K. T. (2006). Adsorption of small Aun (n=1-5) and Au-Pd clusters inside the TS-1 and S-1 pores. J. Phys. Chem. B., 110, 16439-16451. DOI: 10.1021/jp061754o.10.1021/jp061754o16913775Search in Google Scholar

Corma, A., Domínguez, I., Doménech, A., Fornés, V., Gómez-García, C., Ródenas, T. & Sabater, M. J. (2009). Enantioselective epoxidation of olefins with molecular oxygen catalyzed by gold(III): A dual pathway for oxygen transfer. J. Catal. 265, 238-244. doi:10.1016/j.jcat.2009.05.00710.1016/j.jcat.2009.05.007Search in Google Scholar

Yang, G., Lan, X, huang, J. Z, Ma D., Zhou, L., Liu, X., Han, X. & Bao, X. (2008). Acidity and defect sites in titanium silicatlite catalyst. Appl. Catal. A: General, 337, 58-65. DOI: 10.1016/j.apcata.2007.11.037.10.1016/j.apcata.2007.11.037Search in Google Scholar

Zhuang, J., Ma, D., Yan, Z., Liu, X., Han, X., Bao, X., Zhang, Y., Guo, X. & Wang, X. (2004). Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction. Appl. Cata. A: General, 258, 1-6. DOI: 10.1016/j.apcata.2003.06.002.10.1016/j.apcata.2003.06.002Search in Google Scholar

Shetti, V. N., Srinivas, D. & Ratnasamy, P. (2004). Enhancement of chemoselective in epoxidation reactions over TS-1 catalysts by alkali and alkaline metal ions. J. Mol. Catal. A: Chemical, 210, 171-178. DOI: 10.1016/j.molcata.2003.09.014.10.1016/j.molcata.2003.09.014Search in Google Scholar

eISSN:
1899-4741
ISSN:
1509-8117
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering