Open Access

Selection and comparison of equipment for deagglomeration processes


Logan, B.E. (1999). Enviromental Transport Processes (pp. 466-504). Wiley, New York.Search in Google Scholar

Bałdyga, J., Orciuch, W., Makowski, ł., Malski-Brodzicki, M. & Malik, K. (2007). Break up of nano-particle clusters in high-shear devices. Chemical Engineering and Processing 46(9), 851-861. DOI:10.1016/j.cep.2007. in Google Scholar

Tang, S., Ma, Y. & Shiu, C. (2001). Modeling the mechanical strength of fractal aggregates. Colloid. Surf. A: Phys. Eng. Aspects 180(1 - 2), 7-16. DOI:10.1016/S0927-7757(00)00743-3.10.1016/S0927-7757(00)00743-3Search in Google Scholar

Elimelech, M., Gregory, J., Jia, X. & Williams, R.A. (1995). Particle Deposition and Aggregation. Butterworth-Heinemann, Oxford.Search in Google Scholar

Collins, J.R. (1996). On the viscosity of concentrated aggregated suspensions. J. Colloid and Interface Sci. 178(1), 361-363. DOI:10.1006/jcis.1996.0125.10.1006/jcis.1996.0125Search in Google Scholar

Buyevich, Yu.A. & Kapbsov, S.K. (1999). Segregation of a fine suspension in channel flow, J. Non-Newt. Fluid. Mech. 86(1 - 2), 157-184. PII: S0377-0257(98)00207-9.10.1016/S0377-0257(98)00207-9Search in Google Scholar

Bałdyga, J., Orciuch, W., Makowski, L., Malik, K., Ozcan-Taskin, G., Eagles, W. & Padron, G. (2008). Dispersion of nanoparticle clusters in a rotor-stator mixer. Industrial and Engineering Chemistry Research 47(10), 3652-3663. DOI: 10.1021/ie070899u.10.1021/ie070899uSearch in Google Scholar

Baxter, R.J. & Percus-Yevick (1968). Equation for Hard Spheres with Surface Adhesion. Journal of Chemical Physics 49, 2770-2774. DOI: 10.1063/1.1670482.10.1063/1.1670482Search in Google Scholar

Russel, W.B. (1984). The Huggins coefficient as a means for characterizing suspended particles. J. Chem. Soc. Faraday Trans. 2, 80, 31-41. DOI: 10.1039/F29848000031.10.1039/f29848000031Search in Google Scholar

Cichocki, B. & Felderhof, B.U. (1990). Diffusion coefficients and effective viscosity of suspensions of sticky hard spheres with hydrodynamic interactions. J. Chem. Phys. 93(6), 4427-4432. DOI:10.1063/1.459688.10.1063/1.459688Search in Google Scholar

Rueb, C.J. & Zukoski, C.F. (1998). Rheology of suspensions of weakly attractive particles: approach to gelation. J. Rheol. 42(6), 1451-1476. DOI: 10.1122/1.550966.10.1122/1.550966Search in Google Scholar

Batchelor, G.K. & Green, J.T. (1972). The hydrodynamic interaction of two small freely-moving spheres in a linear flow field. J. Fluid Mech. 56(2), 375-400. DOI:10.1017/S0022112072002927.10.1017/S0022112072002927Search in Google Scholar

Gidaspow, D. (1994). Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, Boston.Search in Google Scholar

Changfu You, Hailiang Zhao, Yi Cai, Haiying Qi & Xuchang Xu (2004). Experimental investigation of interparticle collision rate in particulate flow. Multiphase Flow 30(9), 1121-1138. DOI:10.1016/j.ijmultiphaseflow. 2004.05.009.Search in Google Scholar

Eskin, D., Zhupanska, O., Hamey, R., Moudgil, B. & Scarlett, B. (2005). Microhydrodynamics of stirred media milling. Powder Technology 156,(2 - 3), 95-102. DOI:10.1016/j.powtec.2005. in Google Scholar

Crum, L. (1998). Cavitation microjets as a contributory mechanisms for renal disintegration in ESWL. J. Urol. 140(6), 1587-1590. PMID: 3057239.10.1016/S0022-5347(17)42132-XSearch in Google Scholar

Stender H. -H, Kwade, A. & Schwedes, J. (2004). Stress energy distribution in different stirred media mill geometries. Int. J. Miner. Process 74S(1), S103-S117. DOI:10.1016/j.minpro.2004. in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering