Open Access

miR-548c-5p inhibits proliferation and migration and promotes apoptosis in CD90+ HepG2 cells


Cite

Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. Hepatology 2009; 49: 318-29.10.1002/hep.22704272672019111019Search in Google Scholar

Marquardt JU, Factor VM, Thorgeirsson SS. Epigenetic regulation of cancer stem cells in liver cancer: Current concepts and clinical implications. J Hepatol 2010; 53: 568-77.10.1016/j.jhep.2010.05.003349287720646772Search in Google Scholar

Lingala S, Cui YY, Chen X, Ruebner BH, Qian XF, Zern MA, et al. Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Path 2010; 89: 27-35.10.1016/j.yexmp.2010.05.005290043420511115Search in Google Scholar

Park JR, Kim RJ, Lee YK, Kim SR, Roh KJ, Oh SH, et al. Dysadherin can enhance tumorigenesis by conferring properties of stem-like cells to hepatocellular carcinoma cells. J Hepatol 2011; 54: 122-31.10.1016/j.jhep.2010.06.02620952084Search in Google Scholar

Ardebili SY, Zajc I, Gole B, Campos B, Herold-Mende C, Drmota S, et al. CD133/prominin1 is prognostic for GBM patient's survival, but inversely correlated with cysteine cathepsins' expression in glioblastoma derived spheroids. Radiol Oncol 2011; 45: 102-15.10.2478/v10019-011-0015-6342373122933943Search in Google Scholar

Yang ZF, Ngai P, Ho DW, Yu WC, Ng MN, Lau CK, et al. Identification of local and circulating cancer stem cells in human liver cancer. Hepatology 2008; 47: 919-28.10.1002/hep.2208218275073Search in Google Scholar

Yang ZF, Ho DW, Ng MN, Lau CK, Yu WC, Ngai P, et al. Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 2008; 13: 153-66.10.1016/j.ccr.2008.01.01318242515Search in Google Scholar

Tomuleasa C, Soritau O, Rus-Ciuca D, Pop T, Todea D, Mosteanu O, et al. Isolation and characterization of hepatic cancer cells with stem-like properties from hepatocellular carcinoma. J Gastrointestin Liver Dis 2010; 19: 61-7.Search in Google Scholar

Kohga K, Tatsumi T, Takehara T, Tsunematsu H, Shimizu S, Yamamoto M, et al. Expression of CD133 confers malignant potential by regulating metallo-proteinases in human hepatocellular carcinoma. J Hepatol 2010; 52: 872-9.10.1016/j.jhep.2009.12.03020395004Search in Google Scholar

Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ, et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 2008; 6: 1146-53.10.1158/1541-7786.MCR-08-003518644979Search in Google Scholar

Na DC, Lee JE, Yoo JE, Oh BK, Choi GH, Park YN. Invasion and EMT-associated genes are up-regulated in B viral hepatocellular carcinoma with high expression of CD133-human and cell culture study. Exp Mol Pathol 2011; 90: 66-73.10.1016/j.yexmp.2010.10.00320969862Search in Google Scholar

Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, et al. Side population purified from hepatocellular carcinoma cells harbors cancer stem cel1-1ike properties. Hepatology 2006; 44: 240-51.10.1002/hep.2122716799977Search in Google Scholar

Cui F, Wang J, Chen D, Chen YJ. CD133 is a temporary marker of cancer stem cells in small cell lung cancer, but not in non-small cell lung cancer. Oncol Rep 2011; 25: 701-8.Search in Google Scholar

Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823-35.10.1016/j.cell.2005.03.03215960971Search in Google Scholar

Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007; 120: 1444-50.10.1002/ijc.2247617205516Search in Google Scholar

Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, Moriwaki H. Characterization of CD133+ hepatocel1u1ar carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun 2006; 351: 820-4.10.1016/j.bbrc.2006.10.12817097610Search in Google Scholar

Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007; 132: 2542-56.10.1053/j.gastro.2007.04.02517570225Search in Google Scholar

Khan MS, Halagowder D, Devaraj SN. Methylated chrysin induces co-ordinated attenuation of the canonical Wnt and NF-kB signaling pathway and upregulates apoptotic gene expression in the early hepatocarcinogenesis rat model. Chem Bio Interact 2011; 193: 12-21.10.1016/j.cbi.2011.04.00721554863Search in Google Scholar

Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94: 776-80.10.1038/sj.bjc.6603023236137716495913Search in Google Scholar

Hashimoto T, Kikkawa U, Kamada S. Contribution of caspase(s) to the cell cycle regulation at mitotic phase. PLoS One 2011; 6: e18449.10.1371/journal.pone.0018449306816821479177Search in Google Scholar

Depraetere V, Golstein P. Dismantling in cell death: molecular mechanisms and relationship to caspase activation. Scand J Immunol 2005; 47: 523-31.10.1046/j.1365-3083.1998.00363.x9652819Search in Google Scholar

Vaishnav M, MacFarlane M, Dickens M. Disassembly of the JIP1/JNK molecular scaffold by caspase-3-mediated cleavage of JIP1 during apoptosis. Exp Cell Res 2011; 317: 1028-39.10.1016/j.yexcr.2011.01.011306333921237154Search in Google Scholar

Rudner J, Elsaesser SJ, Jendrossek V, Huber SM. Anti-apoptotic Bcl-2 fails to form efficient complexes with pro-apoptotic Bak to protect from Celecoxibinduced apoptosis. Biochemical Pharmacol 2011; 81: 32-42.10.1016/j.bcp.2010.09.00220836993Search in Google Scholar

Kim R, Emi M, Matsuura K, Tanabe K. Therapeutic potential of antisense Bcl-2 as a chemosensitizer for patients with gastric carcinoma. Gan To Kagaku Ryoho. 2005; 32: 1540-5.10.1200/jco.2005.23.16_suppl.4050Search in Google Scholar

Barrezueta LF, Oshima CT, Lima FO, De Oliveira Costa H, Gomes TS, Neto RA, et al. The intrinsic apoptotic signaling pathway in gastric adenocarcinomas of Brazilian patients: Immunoexpression of the Bcl-2 family (Bcl-2, Bcl-x, Bak, Bax, Bad) determined by tissue microarray analysis. Mol Med Report 2010; 3: 261-7.10.3892/mmr_000000249Search in Google Scholar

Chami M, Prandini A, Campanella M, Pinton P, Szabadkai G, Reed JC, et al. Bcl-2 and bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. J Biol Chem 2004; 279: 54581-9.10.1074/jbc.M40966320015485871Search in Google Scholar

Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 2011; 19: 776-91.10.1016/j.ccr.2011.05.008311554121665151Search in Google Scholar

Lee YS, Mollah ML, Sohn KC, Shi G, Kim DH, Kim KH, et al. Ki-Hwan Kim ID3 mediates X-ray-induced apoptosis of keratinocytes through the regulation of β-catenin. J Dermatol Sci 2010; 60: 138-42.10.1016/j.jdermsci.2010.09.00221030215Search in Google Scholar

Luo H, Yang Y, Huang F, Li F, Jiang Q, Shi K, et al. Selenite induces apoptosis in colorectal cancer cells via AKT-mediated inhibition of β-catenin survival axis. Cancer Lett 2012; 315: 78-85.10.1016/j.canlet.2011.10.01422074856Search in Google Scholar

Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 6029-33.10.1158/0008-5472.CAN-05-013716024602Search in Google Scholar

Bachour T, Bennett K. The role of microRNAs in breast cancer. J Assoc Genet Technol 2011; 37: 21-8.Search in Google Scholar

Lin Z, Flemington EK. miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett 2011; 305: 186-99.10.1016/j.canlet.2010.08.018302382320943311Search in Google Scholar

Kerr TA, Korenblat KM, Davidson NO. MicroRNAs and liver disease. Transl Res 2011; 157: 241-52.10.1016/j.trsl.2011.01.008306395221420035Search in Google Scholar

Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, Tang M, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol 2008; 23: 87-94.10.1111/j.1440-1746.2007.05223.x18171346Search in Google Scholar

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593-601.10.1038/ncb172218376396Search in Google Scholar

Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett 2007; 252: 157-70.10.1016/j.canlet.2006.11.01017188425Search in Google Scholar

eISSN:
1581-3207
ISSN:
1318-2099
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology