Open Access

Design and development of paclitaxel-loaded bovine serum albumin nanoparticles for brain targeting

E. Baloglu and D. G. Kingston, The taxane diterpenoids, J. Nat. Prod. 62 (1999) 1448-1472.10.1021/np990176iSearch in Google Scholar

S. B. Horwitz, Taxol (paclitaxel): mechanisms of action, Annals Oncol. 5 (Suppl. 6) (1994) S3-S6.Search in Google Scholar

A. K. Singla, A. Garg and D. Aggarwal, Paclitaxel and its formulations, Int. J. Pharm. 235 (2002) 179-192; DOI: 10.1016/S0378-5173(01)00986-3.10.1016/S0378-5173(01)00986-3Search in Google Scholar

J. C. Olivier, Drug transport to brain with targeted nanoparticles, NeuroTherapeutics 2 (2005) 108-119.10.1602/neurorx.2.1.108Search in Google Scholar

N. R. Saunders, M. D. Habgood and K. M. Dziegielewska, Barrier mechanisms in the brain, I. Adult brain, Clin. Exp. Pharmacol. Physiol. 26 (1999) 11-19.10.1046/j.1440-1681.1999.02986.xSearch in Google Scholar

J. Kreuter, R. N. Alyautdin, D. A. Kharkevich and A. A. Ivanov, Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles), Brain Res. 674 (1995) 171-174; DOI: 10.1016/0006-8993(95)00023-J.10.1016/0006-8993(95)00023-JSearch in Google Scholar

C. M. Lopes, J. M. S. Lobo, J. F. Pinto and P. C. Costa, Compressed matrix core tablet as a quick/slow dual component delivery system containing ibuprofen, AAPS PharmSciTech. 8 (2007) E1-E8; DOI: 10.1208/pt0803076.10.1208/pt0803076Search in Google Scholar

A. B. Dhanikula and R. Panchagnula, Preparation and characterization of water-soluble prodrug, liposomes and micelles of paclitaxel, Curr. Drug Deliv. 2 (2005) 75-91.10.2174/1567201052772861Search in Google Scholar

J. J. Marty, R. C. Oppenheimer and P. Speiser, Nanoparticles - a new colloidal drug delivery system, Pharm. Acta Helv. 53 (1978) 17-23.Search in Google Scholar

W. Lin, M. C. Garnett, E. Schacht, S. Davis and L. Illum, Preparation and in vitro characterization of HSA-mPEG nanoparticles, Int. J. Pharm. 189 (1999) 161-170; DOI: 10.1016/S0378-5173(99)00253-7.10.1016/S0378-5173(99)00253-7Search in Google Scholar

K. Michaelis, M. M. Hoffman, S. Dreis, E. Herbert, R. N. Alyautdin, M. Michaelis, J. Kreuter and K. Langer, Covalent linkage of apolipoprotein E to albumin nanoparticles strongly enhances drug transport into the brain, J. Pharmacol. Exper. Ther. 317 (2006) 1246-1253.10.1124/jpet.105.097139Search in Google Scholar

T. Govender, S. Stolnik, M. C. Garnett, L. Illum and S. S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Control. Release 57 (1999) 171-185; DOI: 10.1016/S0168-3659(98)00116-3.10.1016/S0168-3659(98)00116-3Search in Google Scholar

K. Zhang and X. Y. Wu, Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides, Biomaterials 22 (2004) 5281-5291.10.1016/j.biomaterials.2003.12.032Search in Google Scholar

Z. Y. Shen, M. Guang-Hui, D. Toshiaki, M. Yasuyuki and Z. G. Su, Preparation and characterization of thermo-responsive albumin nanospheres, Int. J. Pharm. 346 (2008) 133-142; DOI: 10.1016/j.ijpharm.2007.06.004.10.1016/j.ijpharm.2007.06.004Search in Google Scholar

S. S. Feng and G. Huang, Effects of emulsifiers on the controlled release of paclitaxel from nanoparticles of biodegradable polymers, J. Control. Rel. 71 (2001) 53-69; DOI: 10.1016/S0168-3659(00)00364-3.10.1016/S0168-3659(00)00364-3Search in Google Scholar

R. W. Korsmeyer, R. Gurny, E. Doelker, P. Buri and N. A. Peppas, Mechanisms of solute release from porous hydrophilic polymers, Int. J. Pharm. 15 (1983) 25-35. DOI: 10.1016/0378-5173(83)90064-9.10.1016/0378-5173(83)90064-9Search in Google Scholar

P. L. Ritger and N. A. Peppas, A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices, J. Control. Release 5 (1987) 37-42; DOI: 10.1016/0168-3659(87)90035-6.10.1016/0168-3659(87)90035-6Search in Google Scholar

A. K. Philip and K. Pathak, Osmotic flow through assymetric membrane: A means for controlled delivery of drugs with varying solubility, AAPS PharmSciTech. 7 (2006) E1-E11.10.1208/pt070356Search in Google Scholar

D. N. Kapoor, F. V. Manvi, R. C. Doijad and S. Dhawan, Prednisolone loaded albumin nanospheres: in-vitro and in-vivo evaluation studies, PDA J. Pharm. Sci. Tech. 62 (2008) 111-124.Search in Google Scholar

K. Santhi, S. A. Dhanaraj, A. Ponnusankar and B. Suresh, Study on formulation and targeting efficiency of Amphotericin-B nanoparticles, Indian J. Pharm. Sci. 6 (2000) 421-423.Search in Google Scholar

K. Langer, S. Balthasar, V. Vogel, N. Dinauer, H. V. Briesen and D. Schubert, Optimization of the preparation process for human serum albumin (HSA) nanoparticles, Int. J. Pharm. 257 (2003) 169-180; DOI: 10.1016/S0378-5173(03)00134-0.10.1016/S0378-5173(03)00134-0Search in Google Scholar

W. Lin, A. G. A. Coombes, M. C. Davies, S. S. Davis and L. Illum, Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method, J. Drug Target. 1 (1993) 237-243; DOI: 10.3109/10611869308996081.10.3109/106118693089960818069565Search in Google Scholar

C. Narendra, M. S. Srinath and A. Moin, The study on the effect of formulation variables on in vitro floating time and the release properties of a floating drug delivery system by a statistical optimization technique, Chem. Ind. Chem. Eng. Quart. 14 (2008) 17-26.10.2298/CICEQ0801017NSearch in Google Scholar

eISSN:
1846-9558
ISSN:
1330-0075
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Pharmacy, other