Open Access

Address Sequences and Backgrounds with Different Hamming Distances for Multiple Run March Tests

International Journal of Applied Mathematics and Computer Science's Cover Image
International Journal of Applied Mathematics and Computer Science
Selected Problems of Computer Science and Control (special issue), Krzysztof Gałkowski, Eric Rogers and Jan Willems (Eds.)

Bernardi E., Sancez M., Squillero G. and Sonza Reorda M. (2006). An effective technique for minimizing the cost of processor software-based diagnosis in SoCs, Proceedings of the Conference on Design, Automation and Test in Europe, Munich, Germany, pp. 412-417.Search in Google Scholar

Bernardi P., Grosso M., Rebaudengo M. and Sonza Reorda M. (2005). Exploiting an infrastructure IP to reduce the costs of memory diagnosis in SoCs, Proceedings of the European Test Symposium, Tallinn, Estonia, pp. 202-207.Search in Google Scholar

Cheng K.-L., Tsai M.-F. and Wu C.-W. (2001). Efficient neighborhood pattern-sensitive fault test algorithms for semiconductor memories, Proceedings of the IEEE VLSI Test Symposium (VTS), Marina del Rey, CA, USA, pp. 225-237.Search in Google Scholar

Cheng K.-L., Tsai M.-F. and Wu C.-W. (2002). Neighborhood pattern sensitive fault testing and diagnostics for random access memories, IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems21(11): 1328-1336.10.1109/TCAD.2002.804101Search in Google Scholar

Cockburn B. E. (1995). Deterministic tests for detecting scrambled pattern-sensitive faults in RAMs, Proceeding IEEE International Workshop on Memory Technology, Design and Testing (MTDT 95), San Jose, CA, USA, pp. 117-122.Search in Google Scholar

Franklin M. and Saluja K. K. (1996). Testing reconfigured RAM's and scrambled address RAM's for pattern sensitive faults, IEEE Transactions on Computer-Aided Design of Integrated Circuits15(9): 1081-1087.10.1109/43.536714Search in Google Scholar

Gilbert E. N. (1958). Gray codes and paths on the n-cube, Bell System Technical Journal37: 815-826.10.1002/j.1538-7305.1958.tb03887.xSearch in Google Scholar

Goor A. J. v. d. (1991). Testing Semiconductor Memories: Theory and Practice, John Wiley & Sons, Chichester.Search in Google Scholar

Gray F. (1958). Pulse code communication, U. S. Patent 2,632,058.Search in Google Scholar

Hayes J. P. (1975). Detection of pattern sensitive faults in random access memories, IEEE Transactions on Computers24(2): 150-157.10.1109/T-C.1975.224182Search in Google Scholar

Hayes J. P. (1980). Testing memories for single cell pattern sensitive fault, IEEE Transactions on Computers29(2): 249-254.10.1109/TC.1980.1675556Search in Google Scholar

Li J.-F. (2007). Transparent-test methodologies for random access memories without/with ECC, Transactions on Computer-Aided Design of Integrated Circuits and Systems26(10): 1888-1983.10.1109/TCAD.2007.895772Search in Google Scholar

Niggemeyer D., Redeker M. and Otterstedt J. (1998). Integration of non-classical faults in standard march tests, Proceedings of the 1998 IEEE International Workshop on Memory Technology, Design and Testing, San Jose, CA, USA, pp. 91-96.Search in Google Scholar

Niggemeyer D., Redeker M. and Rudnick E. (2000). Diagnostic testing of embedded memories based on output tracing, Proceedings of the IEEE International Workshop on Memory Technology, Design and Testing, San Jose, CA, USA, pp. 113-118.Search in Google Scholar

Pomeranz I. and Reddy S. M. (2006). Fault detection by output response comparison of identical circuits using half-frequency compatible sequences, Proceedings of the International Test Conference, Santa Clara, CA, USA, pp. 202-207.Search in Google Scholar

Savage C. (1997). A survey of combinatorial Gray codes, SIAM Review39(4): 605-629.10.1137/S0036144595295272Search in Google Scholar

Sokol B. and Yarmolik S. V. (2006). Address sequence for March tests to detect pattern sensitive faults, Proceedings of the 3rd IEEE International Workshop on Electronic Design Test & Applications (DELTA'06), Kuala Lumpur, Malaysia, pp. 354-357.Search in Google Scholar

Suk D. S. and Reddy S. M. (1980). Test procedures for a class of pattern sensitive faults in semiconductor random access memories, IEEE Transactions on Computers29(6): 419-429.10.1109/TC.1980.1675601Search in Google Scholar

Yarmolik S. V. (2006). Gray code with maximum of Hamming distance, Proceedings of the 4th International Science-Practice Forum on Information Technologies and Cybernetics, Dnipropetrovsk, Ukraine, p. 77.Search in Google Scholar

Yarmolik S. V. and Sokol B. (2006). Optimal memory address seeds for pattern sensitive faults detection, Proceedings of the IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems (DDECS'2006), Prague, Czech Republic, pp. 220-221.Search in Google Scholar

Yarmolik S. V. and Yarmolik V. N. (2006a). Memory pattern sensitive faults detection using multiple runs of March tests, Informatics1(9): 104-113.Search in Google Scholar

Yarmolik V. N., Klimets Y. and Demidenko S. (1998). March PS(23n) test for DRAM pattem sensitive faults, Proceedings of the 7th IEEE Asian Test Symposium (ATS), Singapore, pp. 354-351.Search in Google Scholar

Yarmolik V. N. and Yarmolik S. V. (2006b). Address sequences for multiple run march tests, Automatic Control and Computer Sciences5: 59-68.10.1134/S000511790704011XSearch in Google Scholar

ISSN:
1641-876X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Mathematics, Applied Mathematics