1. bookVolume 33 (2009): Issue -1 (June 2009)
Journal Details
License
Format
Journal
eISSN
1897-1695
ISSN
1733-8387
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
access type Open Access

Argon Stable Isotope Concentrations in Lunar Regolith

Published Online: 16 Jun 2009
Volume & Issue: Volume 33 (2009) - Issue -1 (June 2009)
Page range: 37 - 39
Journal Details
License
Format
Journal
eISSN
1897-1695
ISSN
1733-8387
First Published
04 Jul 2007
Publication timeframe
1 time per year
Languages
English
Argon Stable Isotope Concentrations in Lunar Regolith

We performed stepwise heating experiments for determination of the two stable isotope ratios of argon fractions and total concentrations of the three stable isotopes 36Ar, 38Ar and 40Ar in lunar regolith acquired from the Apollo 11, Apollo 12 and Apollo16 missions. Also the concentration of in situ formed radiogenic 40Ar was estimated on the basis of known ages and potassium concentrations determined by isotope dilution method. The observed excess of 40Ar concentration is interpreted to be due to variable (over geological time) flux of solar energetic particles which were implanted into the material at the Moon surface.

Keywords

Allen C and Todd NS, 2007. Astromaterials curation - Rocks and soils from the Moon. http://curator.jsc.nasa.gov/lunar/index.cfmSearch in Google Scholar

Berra F, Swindle TD, Korotev RL, Jolliff BL, Zeigler RA and Olson E, 2006. 40Ar/39Ar dating of Apollo 12 regolith: Implication for age of Copernicus and the source of nonmare materials. Geochimica et Cosmochimica Acta 70(24): 6016-6031, DOI 10.1016/j.gca.2006.09.013.10.1016/j.gca.2006.09.013Search in Google Scholar

Dalrymple GB, 1994. The age of the Earth. Stanford University Press, Stanford, California.Search in Google Scholar

Halas S, 2001. Elemental analysis by isotope dilution technique on example of potassium determination in minerals dated by K/Ar method (in Polish). Elektronika 42: 53-55.Search in Google Scholar

Halas S, 2007. Low-blank crucible for argon extraction from minerals at temperatures up to 1550°C. Geochronometria 27:1-3, DOI 10.2478/v10003-007-0014-1.10.2478/v10003-007-0014-1Search in Google Scholar

Levine J, Renne PR and Muller RA, 2007. Solar and cosmogenic argon in dated lunar impact spherules. Geochimica et Cosmochimica Acta 71(6): 1624-1635, DOI 10.1016/j.gca.2006.11.034.10.1016/j.gca.2006.11.034Search in Google Scholar

Norman MD, Duncan RA and Huard JJ, 2006. Identifying impact events within the lunar cataclysm from 40Ar-39Ar ages and compositions of Apollo 16 impact melt rocks. Geochimica et Cosmochimica Acta 70(24): 6032-6049, DOI 10.1016/j.gca.2006.05.021.10.1016/j.gca.2006.05.021Search in Google Scholar

Ozima M and Podosek FA, 2002. Noble gas geochemistry, Second Edition. Cambridge University Press: 286 pp.10.1017/CBO9780511545986Search in Google Scholar

Ozima M, Wieler R, Marty B and Podosek FA, 1998. Comparative studies of solar, Q-gases and terrestrial noble gases, and implication on the evolution of solar nebula. Geochimica et Cosmochimica Acta 62(2) 301-31410.1016/S0016-7037(97)00339-6Search in Google Scholar

Suess HE, 1949. Die Häufigkeit der Edelgase auf der Erde und im Kosmos. Journal of Geology 57: 600-607.10.1086/625673Search in Google Scholar

Takahashi K, Boyd RN, Mathews GJ and Yokoi K, 1987. Bound-state beta decay of highly ionized atoms. Physical Review C: Nuclear Physics 36: 1522-1528, DOI 10.1103/PhysRevC.36.1522.10.1103/PhysRevC.36.15229954244Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo