Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S. (2016) Social lstm: Human trajectory prediction in crowded spaces. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 961–971.10.1109/CVPR.2016.110Search in Google Scholar
Bock, J., Krajewski, R., Moers, T., Runde, S., Vater, L., Eckstein, L. (2020) The ind dataset: A drone dataset of naturalistic road user trajectories at german intersections. In: 2020 IEEE Intelligent Vehicles Symposium (IV), 1929–1934. https://doi.org/10.1109/IV47402.2020.9304839.10.1109/IV47402.2020.9304839Search in Google Scholar
Cheng, H., Liao, W., Tang, X., Yang, M.Y., Sester, M., Rosenhahn, B. (2021) Exploring dynamic context for multi-path trajectory prediction. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), 12795–12801. https://doi.org/10.1109/ICRA48506.2021.9562034.10.1109/ICRA48506.2021.9562034Search in Google Scholar
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N. (2020) An image is worth 16x16 words: Transformers for image recognition at scale. https://doi.org/10.48550/ARXIV.2010.11929,https://arxiv.org/abs/2010.11929.Search in Google Scholar
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A. (2018) Social gan: Socially acceptable trajectories with generative adversarial networks. https://doi.org/10.48550/ARXIV.1803.10892, https://arxiv.org/abs/1803.10892.Search in Google Scholar
Hochreiter, S., Schmidhuber, J. (1997) Long short-term memory. Neural computation, 9, 1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.10.1162/neco.1997.9.8.17359377276Search in Google Scholar
Ivanovic, B., Pavone, M. (2018) The trajectron: Probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. https://doi.org/10.48550/ARXIV.1810.05993, https://arxiv.org/abs/1810.05993.Search in Google Scholar
Jang, E., Gu, S., Poole, B. (2016) Categorical reparameterization with gumbel-softmax. https://doi.org/10.48550/ARXIV.1611.01144, https://arxiv.org/abs/1611.01144.Search in Google Scholar
Jiang, Z., Zheng, Y., Tan, H., Tang, B., Zhou, H. (2016) Variational deep embedding: A generative approach to clustering. CoRR abs/1611.05148, http://arxiv.org/abs/1611.05148.Search in Google Scholar
Kingma, D.P., Ba, J. (2014) Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations, San Diego, https://doi.org/10.48550/ARXIV.1412.6980https://arxiv.org/abs/1412.6980Search in Google Scholar
Kingma, D.P., Welling, M. (2013) Auto-encoding variational bayes. https://doi.org/10.48550/ARXIV.1312.6114, https://arxiv.org/abs/1312.6114Search in Google Scholar
Krajewski, R., Moers, T., Bock, J., Vater, L., Eckstein, L. (2020) The round dataset: A drone dataset of road user trajectories at roundabouts in germany. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC45102.2020.9294728.10.1109/ITSC45102.2020.9294728Search in Google Scholar
Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., Chandraker, M. (2017) Desire: Distant future prediction in dynamic scenes with interacting agents. https://doi.org/10.48550/ARXIV.1704.04394, https://arxiv.org/abs/1704.04394.Search in Google Scholar
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B. (2021) Swin transformer: Hierarchical vision transformer using shifted windows. https://doi.org/10.48550/ARXIV.2103.14030,https://arxiv.org/abs/2103.14030.Search in Google Scholar
Maddison, C.J., Mnih, A., Teh, Y.W. (2016) The concrete distribution: A continuous relaxation of discrete random variables. https://doi.org/10.48550/ARXIV.1611.00712, https://arxiv.org/abs/1611.00712Search in Google Scholar
Schmidt, S., Assmann, T., Junge, L., H öfer, M., Kastner, K., Manoeva, D., Matthies, E., Riestock, M., Rolof, S., Sass, S., Schmidt, M., Seidel, M., Weißflog, J. (2021) Shared autonomous cargo bike fleets-approaches for a novel sustainable urban mobility solution.10.46720/F2021-ACM-124Search in Google Scholar
Sohn, K., Lee, H., Yan, X. (2015) Learning structured output representation using deep conditional generative models. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, 28. Curran Associates, Inc., https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf AI-BASED TRAJECTORY FORECASTS 15.Search in Google Scholar
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I. (2017) Attention is all you need. https://doi.org/10.48550/ARXIV.1706.03762,https://arxiv.org/abs/1706.03762.Search in Google Scholar
Xie, J., Girshick, R., Farhadi, A. (2015) Unsupervised deep embedding for clustering analysis. https://doi.org/10.48550/ARXIV.1511.06335, https://arxiv.org/abs/1511.06335Search in Google Scholar
Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X. (2020) Bi-trap: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation. https://doi.org/10.48550/ARXIV.2007.14558https://arxiv.org/abs/2007.1455Search in Google Scholar