Open Access

Research of an Influence of a Traffic Flow Movement Intensity Change on the Possibility of Nonstop Passage of the Traffic Lights Objects


Cite

1. Anderson, M. L. (2013) Subways, strikes, and slowdowns: the impacts of public transit on traffic congestion, NBER Working Paper, 18757, 48 p. DOI: 10.3386/w18757.10.3386/w18757 Search in Google Scholar

2. Archer, J. (2005) Indicators for traffic safety assessment and prediction and their application in micro-simulation modelling: a study of urban and suburban intersections. Doctoral Dissertation. KTH Royal Institute of Technology, Sweden, 254 p. Search in Google Scholar

3. Bartuška, L., Stopka, O., Ližbetin, J. (2015) Methodology for Determining the Traffic Volumes on Urban Roads in the Czech Republic. In: Proceedings of 19th International Conference: Transport Means 2015, 21–22 October 2015, Kaunas, Lithuania. Search in Google Scholar

4. Ben-Dor, G., Ben-Elia, E., Benenson, I. (2018) Assessing the impacts of dedicated bus lanes on urban traffic congestion and modal split with an agent-based model. Procedia Computer Science, 130, 824–829. DOI: 10.1016/j.procs.2018.04.071.10.1016/j.procs.2018.04.071 Search in Google Scholar

5. Chandra, S., Kumar, U. (2003) Effect of lane width on capacity under mixed traffic conditions in India. Journal of Transportation Engineering, 129(2), 155–160. DOI: 10.1061/(ASCE)0733-947X(2003)129:2(155).10.1061/(ASCE)0733-947X(2003)129:2(155) Search in Google Scholar

6. Cools, M., Moons, E., Wets, G. (2010) Assessing the impact of weather on traffic intensity. Weather, Climate, and Society, 2, 60–68. DOI: 10.1175/2009WCAS1014.1.10.1175/2009WCAS1014.1 Search in Google Scholar

7. Dzyura, V. (2016) Ways of improvement of the city road network functioning. Journal of Sustainable Development of Transport and Logistics, 1(1), 11–15. DOI: 10.14254/jsdtl.2016.1-1.2.10.14254/jsdtl.2016.1-1.2 Search in Google Scholar

8. Falcocchio, J. C., Levinson, H. S. (2015) Road Traffic Congestion: A Concise Guide. Springer. DOI: 10.1007/978-3-319-15165-6.10.1007/978-3-319-15165-6 Search in Google Scholar

9. Guadamuz, R., Tang, H., Yu, Z., Guler, S. I., Gayah, V. V. (2021) Green time usage metrics on signalized intersections and arterials using high-resolution traffic data. International Journal of Transportation Science and Technology, in press. DOI: 10.1016/j.ijtst.2021.06.006.10.1016/j.ijtst.2021.06.006 Search in Google Scholar

10. He, X., Liu, H. X., Liu, X. (2015) Optimal vehicle speed trajectory on a signalized arterial with consideration of queue. Transportation Research Part C: Emerging Technologies, 61, 106–120. DOI: 10.1016/j.trc.2015.11.001.10.1016/j.trc.2015.11.001 Search in Google Scholar

11. Jiang, H., Hu, J., An, S., Wang, M., Park, B. B. (2017) Eco approaching at an isolated signalized intersection under partially connected and automated vehicles environment. Transportation Research Part C: Emerging Technologies, 79, 290–307. DOI: 10.1016/j.trc.2017.04.001.10.1016/j.trc.2017.04.001 Search in Google Scholar

12. Jiang, J., Astolfi, A., Parisini, T. (2021) Robust traffic wave damping via shared control. Transportation Research Part C: Emerging Technologies, 128, id. 103110. DOI: 10.1016/j.trc.2021.103110.10.1016/j.trc.2021.103110 Search in Google Scholar

13. Johansson, G., Rumar, K. (1971) Drivers’ brake reaction times. Human Factors: The Journal of the Human Factors and Ergonomics Society, 13(1), 23–27. DOI: 10.1177/001872087101300104.10.1177/0018720871013001045542208 Search in Google Scholar

14. Lindley, J. A. (1987) Urban freeway congestion: quantification of the problem and effectiveness of potential solutions. ITE Journal, 57(1), 27–32. Search in Google Scholar

15. Lu, Q., Tettamanti, T., Hörcher, D, Varga, I. (2020) The impact of autonomous vehicles on urban traffic network capacity: an experimental analysis by microscopic traffic simulation. Transportation Letters: The International Journal of Transportation Research, 12(8), 540–549. DOI: 10.1080/19427867.2019.1662561.10.1080/19427867.2019.1662561 Search in Google Scholar

16. Mahler, G., Vahidi, A. (2012) Reducing idling at red lights based on probabilistic prediction of traffic signal timings. In: 2012 American Control Conference (ACC), 27–29 June 2012, Montreal, QC, Canada, 6557–6562. DOI: 10.1109/ACC.2012.6314942.10.1109/ACC.2012.6314942 Search in Google Scholar

17. Mazyliuk, P. (2019) Development of a method of rational passage of the regulated road sections by the vehicles. Lutsk National Technical University, Ukraine. Search in Google Scholar

18. Mazyliuk, P. (2018) Technical development of the method of non-stop travel of traffic lights. Bulletin of BrSTU, 4(112), 76–78. Search in Google Scholar

19. Metz, D. (2018) Developing policy for urban autonomous vehicles: impact on congestion. Urban Science, 2(2), 33. DOI: 10.3390/urbansci2020033.10.3390/urbansci2020033 Search in Google Scholar

20. Mintsis, E., Vlahogianni, E. I., Mitsakis, E., Ozkul, S. (2021) Enhanced speed advice for connected vehicles in the proximity of signalized intersections. European Transport Research Review, 13, id. 2. DOI: 10.1186/s12544-020-00458-y.10.1186/s12544-020-00458-y Search in Google Scholar

21. Nguyen-Phuoc, D. Q., Currie, G., De Gruyter, C., Young, W. (2018a) How do public transport users adjust their travel behaviour if public transport ceases? A qualitative study. Transportation Research Part F: Traffic Psychology and Behaviour, 54, 1–14. DOI: 10.1016/j.trf.2018.01.009.10.1016/j.trf.2018.01.009 Search in Google Scholar

22. Nguyen-Phuoc, D. Q., Currie, G., De Gruyter, C., Young, W. (2018b) Transit user reactions to major service withdrawal – a behavioural study. Transport Policy, 64, 29–37. DOI: 10.1016/j.tranpol.2018.01.004.10.1016/j.tranpol.2018.01.004 Search in Google Scholar

23. Nguyen-Phuoc, D. Q., Young, W., Currie, G., De Gruyter, C. (2020) Traffic congestion relief associated with public transport: state-of-the-art. Public Transport, 12, 455–481. DOI: 10.1007/s12469-020-00231-3.10.1007/s12469-020-00231-3 Search in Google Scholar

24. Pavkova, K., Currie, G., Delbosc, A. (2016) New methods exploring urban traffic congestion using Lorenz and concentration curves. In: Australasian Transport Research Forum 2016, 16–18 November 2016, Melbourne, Australia. Search in Google Scholar

25. Pnevmatikou, A. M., Karlaftis, M. G., Kepaptsoglou, K. (2015) Metro service disruptions: how do people choose to travel? Transportation, 42, 933–949. DOI: 10.1007/s11116-015-9656-4.10.1007/s11116-015-9656-4 Search in Google Scholar

26. Rajak, B., Mallick, S., Kushwaha, D. S. (2020) Creating a dynamic real time green corridor and assessing its impact on normal traffic flow. Procedia Computer Science, 171, 2–11. DOI: 10.1016/j.procs.2020.04.002.10.1016/j.procs.2020.04.002 Search in Google Scholar

27. Rubin, T. A., Mansour, F. (2013) Transit utilization and traffic congestion: is there a connection? Policy Study, 427, 144. Reason Foundation, Los Angeles, CA, US. Search in Google Scholar

28. Shramenko, N., Muzylyov, D., Shramenko, V., Mazyliuk P. (2020) Directions for quality assurance of specialists training in logistics and transport spheres from a competence approach perspective. Lecture Notes in Networks and Systems, 128, 605–611. DOI: 10.1007/978-3-030-46817-0_70.10.1007/978-3-030-46817-0_70 Search in Google Scholar

29. Sitovsky, O., Mazyliuk, P. (2018) The system of display of the recommended mode of movement of the vehicle. Ukrainian Patent UA 123153, G08G1 1/0968. Search in Google Scholar

30. Sitovsky, O., Mazyliuk, P., Velyky, O. (2018) Computer Program – System of Display of the Recommended Mode of Movement of the Vehicle, A. C. 78903 UA, Ukraine. Search in Google Scholar

31. Török, J., Kertész, J. (1996) The green wave model of two-dimensional traffic: transitions in the flow properties and in the geometry of the traffic jam. Physica A: Statistical Mechanics and its Applications, 231(4), 515–533. DOI: 10.1016/0378-4371(96)00144-6.10.1016/0378-4371(96)00144-6 Search in Google Scholar

32. Zhang, J., Shang, H., Li, X., Yao, Y. (2020) An integrated arterial coordinated control model considering green wave on branch roads and pedestrian crossing time at intersections. Journal of Management Science and Engineering, 5(4), 303–317. DOI: 10.1016/j.jmse.2020.09.004.10.1016/j.jmse.2020.09.004 Search in Google Scholar

33. Zhang, Y., Smirnova, M. N., Ma, J., Smirnov, N. N., Zhu, Z. (2021) Tunnel effects on ring road traffic flow based on an urgent-gentle class traffic model. Theoretical and Applied Mechanics Letters, 11(4), id. 100283, DOI: 10.1016/j.taml.2021.100283.10.1016/j.taml.2021.100283 Search in Google Scholar

eISSN:
1407-6179
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other