Open Access

Simulation Based Performance of Mumbai-Pune Expressway Scenario for Vehicle-to-Vehicle Communication Using IEEE 802.11P


Cite

1. Blum, J.J., Eskandarian, A. & L.J. Huffman. (2004). Challenges of inter vehicle ad-hoc networks. IEEE Transactions on Intelligent Transportation System, 5(4), 347-351.10.1109/TITS.2004.838218Search in Google Scholar

2. http://www.its.dot.gov/vii/index.htm.Search in Google Scholar

3. Bilstrup, K., Uhlemann, E., Storm, E.G. & U. Bilstrup. (2008). Evaluation of the IEEE 802.11p MAC method for vehicle-to-vehicle communication. In Proceedings of the 68th IEEE Vehicular Technology Conference (VTC’08), September 2008 (pp.1-5). Calgary, Canada.Search in Google Scholar

4. Bilstrup, K., Uhlemann, E., Storm, E.G. (2008). Medium access control in vehicular networks based on the upcoming IEEE 802.11p standard. In Proceedings of the 15th World Congress on Intelligent Transport Systems (ITS’08) , November 2008 (pp.1-12). New York, USA.Search in Google Scholar

5. http://standards.ieee.org/board/nes/projects/802-11p.pdfSearch in Google Scholar

6. Bilstrup, K. (2007). A survey regarding wireless communication standards intended for a highspeedvehicle environment. Halmstad University, Sweden, Feb. 2007. (Technical Report IDE 0712).Search in Google Scholar

7. Stibor, L., Zang, Y. & H-J. Reumermann. (2007). Evaluation of communication distance of broadcast messages in a vehicular ad- hoc network using IEEE 802.11p. In Proc. IEEE Wireless Communications and Networking Conf., Mar. 2007, (pp. 254-257). Hong Kong, China.Search in Google Scholar

8. Wellen, M., Westphal, B. & P. Mähönen. (2007). Performance evaluation of IEEE 802.11-based WLANs in vehicular scenarios. In Proc. IEEE Vehicular Technology Conf., Apr. 2007 (pp. 1167-1171). Dublin, Ireland.Search in Google Scholar

9. Xiang, W., Richardson, P. & J. Guo. (2007). Introduction and preliminary experimental results of wireless access for vehicular environments (WAVE) systems. In Proc. Int. Conf. Mobile and Ubiquitous Systems: Network and Services, Jul. 2007 (pp. 1-8). San José, CA, US.Search in Google Scholar

10. IEEE P802.11p/D3.0, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment: Wireless Access in Vehicular Environments (WAVE), Draft 3.0, Jul. 2007.Search in Google Scholar

11. Jiang, D. & L. Delgrossi. (2007). IEEE 802.11: Towards an International Standard for Wireless Access in Vehicular Environments.Search in Google Scholar

12. Alonso, A., Sjöberg, K., Uhlemann, E.,. Ström, E.G. & C.F. Mecklenbräuker. (2011). Challenging Vehicular Scenarios for Self-Organizing Time Division Multiple Access. European Cooperation in the Field of Scientific and Technical Research.Search in Google Scholar

13. Sjöberg Bilstrup, K., Uhlemann, E. & E.G. Ström. (2010). Scalability issues for the MAC methods STDMA and CSMA/CA of IEEE 802.11p when used in VANETs. In Proceedings of the IEEE International Conference on Communications (ICC2010).Search in Google Scholar

14. Bilstrup, K., Uhlemann, E., Ström, E.G. & U. Bilstrup. (2009). On the Ability of the 802.11p and STDMA to provide predictable channel access. In Proceedings of the 16th World Congress on ITS.Search in Google Scholar

15. IEEE Std. 802.11e-2005, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005.Search in Google Scholar

16. Bai, F. & H. Krishnan. (2006). Reliability analysis of DSRC wireless communication for vehicle safety applications. In Proc. IEEE Intelligent Transportation Systems Conf., Sep. 2006 (pp. 355-362). Toronto, Canada.Search in Google Scholar

17. Blum, J., Eskandarian, A. & L.J. Hoffman. (Dec. 2004). Challenges of inter vehicle ad hoc networks. IEEE Trans. Intelligent Transportation Systems, 5(4), 347-351.Search in Google Scholar

18. Krishna, C.M. & K.G. Shin. (1997). Real-Time Systems. New York: McGraw-Hill.Search in Google Scholar

19. Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proc. IEEE Vehicular Technology Conf., Oct. 2007 (pp. 2199-2203). Baltimore, MD, US.Search in Google Scholar

20. Choi, N. et al. (2007). A solicitation-based IEEE 802.11p MAC protocol for roadside to vehicular networks. In Proc. Work. on Mobile Networking for Vehicular Environments, May 2007 (pp. 91-96). Anchorage, AK, US,10.1109/MOVE.2007.4300811Search in Google Scholar

21. Suthaputchakun, C. & A. Ganz. (2007). Priority based inter-vehicle communication in vehicular adhoc networks using IEEE 802.11e. In Proc. IEEE Vehicular Technology Conf., Apr. 2007 (pp. 2595-2599). Dublin, Ireland.Search in Google Scholar

22. Shankar, S. & A. Yedla. (2007). MAC layer extensions for improved QoS in 802.11 based vehicular ad hoc networks. In Proc. IEEE Int. Conf. on Vehicular Electronics and Safety, Dec. 2007 (pp. 1-6). Beijing, China.Search in Google Scholar

23. Sjöberg, K. (2011). Standardization of Wireless Vehicular Communications within IEEE and ETSI. IEEE VTS Workshop on Wireless Vehicular Communications.Search in Google Scholar

24. Bilstrup, K., Uhlemann, E., Ström, E.G. & U. Bilstrup. (2009). On the Ability of the 802.11p MAC Method and STDMA to Support Real-Time Vehicle-to-Vehicle Communication. EURASIP Journalon Wireless Communications and Networking, 13, 2009.Search in Google Scholar

25. Alonso, A., Sjöberg, K., Uhlemann, E., Ström, E.G. & C.F. Mecklenbräuker. (2011). Challenging Vehicular Scenarios for Self-Organizing Time Division Multiple Access. European Cooperation in the Field of Scientific and Technical Research. Search in Google Scholar

eISSN:
1407-6179
ISSN:
1407-6160
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other