Cite

1. Aarts B. G., Van Den Brink F. W. and Nienhuis P. H., 2003 ‒ Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: the transversal floodplain gradient, River Research and Applications, 20, 1, 3-23.10.1002/rra.720Search in Google Scholar

2. Adom D., Appiah P. and Yarney L., 2019 – A return to the Ghanian cultural values of closed fishing season in Ghana’s artisanal fishing: an essential means of restoring small pelagic fish stocks, Transylvanian Review of Systematical and Ecological Research, 21.3, The wetlands Diversity, 95-110.10.2478/trser-2019-0020Search in Google Scholar

3. Atlas of Water Cadastre in Romania/Atlasul Cadastrului Apelor din România, 1992 ‒ Bucharest. (in Romanian)Search in Google Scholar

4. Badura M., Schmidleitner A. and Tupikin O., 2018 ‒ Ecosystem services in the Danube Region, Report, 84.Search in Google Scholar

5. Baki A. B. M., Zhu D. Z., Harwood A., Lewisa A. and Healeya K., 2017 ‒ Rock-weir fishway: flow regimes and hydraulic characteristics, Journal of Ecohydraulics, https://doi.org/10.1080/24705357.2017.1369182, 122-141.10.1080/24705357.2017.1369182Search in Google Scholar

6. Bănăduc D., Curtean-Bănăduc A., Pedrotti F., Cianfaglione K. and Akeroyd J., (eds), 2020a ‒ Human impact on Danube Watershed biodiversity in the XXI century, Hardcover ISBN 978-3-030-37241-5, eBook ISBN 978-3-030-37242-2, DOI 10.1007/978-3-030-37242-2, 107 illustrations in colour, Springer International Publishing, First edition, 437.Search in Google Scholar

7.. Bănăduc D., Joy M., Olosutean H., Afanasyev S. and Curtean-Bănăduc A., 2020b ‒ Natural and anthropogenic driving forces as key elements in the Lower Danube basin ‒ South-Eastern Carpathians ‒ North-Western Black Sea coast area lakes, a broken stepping stones for fish in a climatic change scenario? Environmental Science Europe, 32, 73, 14, https://doi.org/10.1186/s12302-020-00348-z.10.1186/s12302-020-00348-zSearch in Google Scholar

8. Bănăduc D., Rey Planellas S., Trichkova T. and Bănăduc A., 2016 ‒ The lower Danube River-Danube Delta-North West Black Sea: a pivotal area of major interest for the past, present and future of its fish fauna – A short review, Science of the Total Environment, 545-546, 137-151.10.1016/j.scitotenv.2015.12.05826745300Search in Google Scholar

9. Bănăduc D., 2012 ‒ Peşti de interes comunitar, în: Măsuri minime de management pentru menţinerea stării favorabile de conservare a habitatelor și speciilor de interes comunitar din Siturile Natura 2000, Curtean-Bănăduc A. şi Florescu F., (coord.), Edit. Universităţii “Lucian Blaga” din Sibiu, ISBN 978-606-12-0414-4, 230. (in Romanian)Search in Google Scholar

10. Bănăduc D., Oprean L. and Bogdan A., 2011 – Fish species of community interest management issues in Natura 2000 Site Sighişoara-Târnava Mare (Transylvania, Romania), Proceedings of 18th International Economic Conference on Crisis After Crisis – Inquires from a National, European and Global perspective, II, 23-27,Search in Google Scholar

11. Bănărescu M. P., 1964 ‒ Fauna Republicii Populare Române, Pisces-Osteichthyes, (Peşti ganoizi şi osoşi), XIII, Edit. Academiei Republicii Populare Române, 1-959. (in Romanian)Search in Google Scholar

12. Bowman E. and Rowe D., 2002 ‒ Successful fish passage past weirs, Hydrology/native freshwater fish, Water and Atmosphere, 18, 1, 24-25.Search in Google Scholar

13. Branco P., Segurado P., Santos J. M. and Ferreira M. T., 2014 ‒ Prioritizing barrier removal to improve functional connectivity of rivers, Journal of Applied Ecology, 51, 1197-1206.10.1111/1365-2664.12317Search in Google Scholar

14. Brown L., 1977 ‒ Redefining National Security, World Watch Paper, 14, (Washington D. C. World Watch Institute), 46.Search in Google Scholar

15. Ćaleta M., Marčić Z., Buj I., Zanella D., Mustafić P., Duplić A. and Horvatić S., 2019 – A review of extant Croatian freshwater fish and lampreys – Annotated list and distribution, Croatian Journal of Fisheries, 77, 3, 137-234.10.2478/cjf-2019-0016Search in Google Scholar

16. Castro G., Chomitz K. and Thomas T., 2002 ‒ The Ramsar Convention: measuring its effectiveness for conserving wetlands of international importance, World Bank and World Wild Life Fund, Ramsar COP 8 DOC 37, Valencia, Spain, 18-26, November.Search in Google Scholar

17. Chick R. S. and Lindley S. T., 2007 ‒ Directed connectivity among fish populations in a riverine network, Journal of Applied Ecology, 44, 6, 1116-1126, https://doi.org/10.1111/j.1365-2664.2007.01383.x10.1111/j.1365-2664.2007.01383.xSearch in Google Scholar

18. Cianfaglione, K., 2009 ‒ The hygrophilous vegetation of the Sulmona Basin (Abruzzo, Italy), Contribuţii Botanice, XLIV, 49-56.Search in Google Scholar

19. Curtean-Bănăduc A. and Bănăduc D. 2020 ‒ Human impact effects on Târnava River basin aquatic biodiversity (Transylvania, Romania), 425-437, in: Human Impact on Danube Watershed Biodiversity in the XXI Century, Bănăduc D., Curtean-Bănăduc A., Pedrotti F., Cianfaglione K. and Akeroyd J., (eds), Hardcover ISBN 978-3-030-37241-5, eBook ISBN 978-3-030-37242-2, DOI 10.1007/978-3-030-37242-2, 107 illustrations in colour, Springer International Publishing, First edition, 437.Search in Google Scholar

20. Curtean-Bănăduc A., Marić S., Gábor G., Didenko A., Rey Planellas S. and Bănăduc, D., 2019 ‒ Hucho hucho (Linnaeus, 1758): last natural viable population in the Eastern Carpathians – conservation elements, Turkish Journal of Zoology, 43, 2, 215-223.10.3906/zoo-1711-52Search in Google Scholar

21. Curtean-Bănăduc A., Didenko A., Guti G. and Bănăduc D., 2018 ‒ Telestes souffia (Risso, 1827) species conservation at the eastern limit of range – Vişeu River basin, Romania, Applied Ecology and Environmental Research, 16, 1, 291-303.10.15666/aeer/1601_291303Search in Google Scholar

22. Curtean-Bănăduc A., Olosutean H. and Bănăduc D., 2016 – Influence of environmental variables on the structure and diversity of ephemeropteran communities: a case study of the Timiş River, Romania, Acta Zoologica Bulgarica, 68, 2, 215-224.Search in Google Scholar

23. Curtean-Bănăduc A., 2015 ‒ Biotope determinants of EPT assemblages structure – Târnava Watershed (Transylvania, Romania) case study, Transylvanian Review of Systematical and Ecological Research, 17.2, The Wetlands Diversity, 95-104.10.1515/trser-2015-0067Search in Google Scholar

24. Curtean-Bănăduc A., Page N., Akeroyd J. and Bănăduc D., 2008 ‒ Integrated biodiversity conservation in a semi-natural landscape: Târnava Mare River area (Transylvania, Romania), Folia oecologica, 42, 67-80.Search in Google Scholar

25. Curtean-Bănăduc A., Bănăduc D. and Bucşa C., 2007 ‒ Watersheds management (Transylvania/Romania) – implications, risks, solutions, chapter in: NATO Security through Science Series C: Environmental Security, DOI: 10.1007/978-1-4020-5996-4_17, 225-238.10.1007/978-1-4020-5996-4_17Search in Google Scholar

26. Deng X., Wang Y., Wu F., Zhang T. and Li Z., 2014 ‒ Integrated river basin management, Practice guideline for the IO table compilation and CGE modelling, ISBN 978-662-43466-6, 99.Search in Google Scholar

27. Dynesius M. and Nilsson C., 1994 ‒ Fragmentation and flow regulation of river systems in the northern third of the world, Science, 266, 753-762.10.1126/science.266.5186.75317730396Search in Google Scholar

28. Enachi E., Bahrim G. E. and Ene A., 2019 – Pharmaceutical compounds and endocrine disruptors in aquatic environments: ecotoxicological effects and analysis methodology, Annals of Dunărea de Jos of Galaţi, II, 172-182.10.35219/ann-ugal-math-phys-mec.2019.2.08Search in Google Scholar

29. Food and Agriculture Organization of the United Nations Fisheries Department., 2002 ‒ Fish passes ‒ design, dimensions and monitoring, Published by the F. A. O. in arrangement with Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (DVWK) Rome, English version copyright 2002 by FAO, German version copyright 1996 by DVWK.Search in Google Scholar

30. Gevorgyan G., Hayrapetyan A., Mamyan A. and Gabrielyan B., 2017 ‒ Hydroecological risk assessment of small hydropower plants operation in Armenia (based on example of Vardenis, Karchaghbyur and Arpa rivers), American-Eurasian Journal of Sustainable Agriculture, ISSN: 1995-0748, EISSN: 1998-1074, 11, 5, 59-67.Search in Google Scholar

31. Hassinger R., 2009 ‒ Borsten-Fischpasse und Fisch-Kanu-Pass Beschreibung der Technik, Kassel, (http:/www.uni-kassel.de/fb14/vpuw/Download/FKP/Stand_der_TechnikBorstenkonzept o309.pdf). (in German)Search in Google Scholar

32. Jägerskog A., Swain A. and Öjendal J., (eds), 2014 ‒ Water security, 1, Introduction, Water security ‒ origin and foundations, Introduction ‒ security and its relation to water, 1-18.10.4135/9781473915602Search in Google Scholar

33. Joy M. K., Foote K. J., McNie P. and Piria M., 2019 ‒ Decline in New Zealand’s freshwater fish fauna: effect of land use, Marine and Freshwater Research, 70, 114-124.10.1071/MF18028Search in Google Scholar

34. Jungwirth M., Haudvogl G., Moog O., Muhar S. and Schmutz S., 2003 – Angewandte Fischökologie and Fliessgewässern, Facultas Universitätsverlag, Wien, ISBN-10: 382522113X, 547. (in German)Search in Google Scholar

35. Katopodis C. and Williams J. G., 2012 ‒ The development of fish passage research in a historical context, Ecological Engineering, 48, 8-18.10.1016/j.ecoleng.2011.07.004Search in Google Scholar

36. Kay E. L. and Voicu R., 2013 ‒ Developing an ecological and migration system for ichthyofauna on the Crişul Repede River near the city hall of Oradea, Management of Sustainable Development Sibiu, Romania, 5, 2, 27-33.10.2478/msd-2013-0012Search in Google Scholar

37. Kemp P. S. and O’Hanley J. R., 2010 ‒ Procedures for evaluating and prioritizing the removal of fish passage barriers: a synthesis, Fisheries Management and Ecology, 17, 4, 297-322.10.1111/j.1365-2400.2010.00751.xSearch in Google Scholar

38. Kilic E. and Yucel N., 2008 ‒ Determination of spatial and temporal changes in water quality at Asi River using multivariate statistical techniques, Turkish Journal of Fisheries and Aquatic Sciences, 19, 9, 727-737, http://doi.org/10.4194/1303-2712-v19_9_02.10.4194/1303-2712-v19_9_02Search in Google Scholar

39. King S., O’Hanley J. R., Newbold L. R., Kemps P. S. and Diebel M. W., 2017 ‒ A toolkit for optimizing fish passage barier mitigation actions, Journal of Applied Ecology, 54, 599-611.10.1111/1365-2664.12706Search in Google Scholar

40. Larinier M., 2002a ‒ Pool fishways, pre-barrages and natural bypass channels, Chapter 5, Bulletin Français de la Pêche et de la Pisciculture, 364, 54-82.10.1051/kmae/2002108Search in Google Scholar

41. Larinier M., 2002b ‒ Biological factors to be taken into account in the design of fishways, the concept of obstructions to upstream migration, Article in Bulletin Français de la Pêche et de la Pisciculture, October, DOI: 10.1051/kmae/2002105 Source: OAI.10.1051/kmae/2002105Search in Google Scholar

42. Larinier M. and Marmulla G., 2004 ‒ Fish passes: types, principles and geographical distribution an overview, 183-205.Search in Google Scholar

43. Lenhardt M., Markovic G. and Gacic Z., 2009 ‒ Decline in the index of biotic integrity of the fish assemblage as a response to reservoir aging, Water Resources Management, 23, 1713-1723.10.1007/s11269-008-9348-3Search in Google Scholar

44. Lenhardt M., Jarić I., Kolarević S., Vuković-Gaćic,B., Knezević-Vukčević J., Smedereva-Lalić M., Cvijanović G. and Gaćic Z., 2016 ‒ Impact of human activities on the status of the Danube River in Serbia: microbiological and ichthyofaunistic studies, Acta Oecologica Carpatica, IX, 151-176.Search in Google Scholar

45. Mader H., Unfer G. and Schmutz S., 1998 ‒ The effectiveness of nature-like bypass channels in a lowland river, the Marchfeldkanal, in: Fish migration and fish biomasses, Jungwirth M., Schmutz S. and Weiss S., (eds), Fishing News Books, Oxford, 384-402.Search in Google Scholar

46. Marić S., Stanković D., Šanda R., Ćaleta M., Čolić S., Šukalo G. and Snoj A., 2019 ‒ Genetic characterisation of European mudminnow (Umbra krameri) populations from the Sava River system, Knowledge and Management of Aquatic Ecosystems, 420, 46.10.1051/kmae/2019035Search in Google Scholar

47. Marić S., Stanković D., Wanzenböck J., Šanda R., Erős T., Takács P., Specziár A., Sekulić N., Bănăduc D., Ćaleta M., Trombitsky I., Galambos L., Sipos S. and Snoj, A., 2017 ‒ Phylogeography and population genetics of the European mudminnow (Umbra krameri) with a time-calibrated phylogeny for the family Umbridae, Hydrobiologia, 792, 151-168.10.1007/s10750-016-3051-9Search in Google Scholar

48. McKay S. K., Cooper A. R., Diebel M. W., Elkins D., Oldford G., Roghair C. and Wieferich D., 2016 ‒ Informing watershed connectivity barrier prioritization decisions: a synthesis, River Research and Applications, 33, 6, 847-862.10.1002/rra.3021Search in Google Scholar

49. Mehlhom H., 2019 – Important rivers and their worldwide contribution to epidemics on the continents, in: Parasite and disease spread by major rivers on Earth, past and future perspectives, Klimpel (ed.), Springer, ISSN 2192-3671, 1-112.10.1007/978-3-030-29061-0_1Search in Google Scholar

50. Mesa M. G. and Magie C. D., 2009 ‒ Prioritizing removal of dams for passage of diadromous fishes on a major river system, River Research and Applications, 25, 107-117.10.1002/rra.1094Search in Google Scholar

51. Mokwa M. and Tyminski T., 2018 ‒ Hydraulic calculations for fish passes, in: Open channel hydraulics, river hydraulic structures and fluvial geomorphology, for engineers, geomorphologists and physical geographers, in: Radecki-Pawlik A., Pagliara S. and Hradecky J., CRC Press, 508.Search in Google Scholar

52. Myers N., 1986 ‒ The environmental dimension to security issues, The Environmentalist, 6, 251-257.10.1007/BF02238056Search in Google Scholar

53. Nilsson C., Reidy C. A., Dynesius M. and Revenga C., 2005 ‒ Fragmentation and flow regulation of the world’s large river systems, Science, 308, 405-408.10.1126/science.1107887Search in Google Scholar

54. O’Hanley, 2011 ‒ Open rivers: barrier removal planning and the restoration of free-flowing rivers, Journal of Environmental Management, 92, 3112-3120.10.1016/j.jenvman.2011.07.027Search in Google Scholar

55. Oertel M., 2013 ‒ In-situ measurements on cross-bar block ramps, in: Bung D. B. and Pagliara S., International Workshop on Hydraulic Design of Low -Head Structures, IWLHS, Bundesanstalt für Wasserbau, 111-119.Search in Google Scholar

56. Pagliara S. and Palermo M., 2012 ‒ Effect of energy dissipation pool geometry on the dissipative process in the presence of block ramps, Journal of Irrigation and Drainage Engineering, 138, 11, 1027-1031.10.1061/(ASCE)IR.1943-4774.0000505Search in Google Scholar

57. Pagliara S. and Palermo M., 2013 ‒ Scour at foundations of rock made low-head structures, Journal of Environment Management, International Workshop on Hydraulic Design of Low-Head Structures, IWLHS, Bundesanstaltfür Wasserbau, 169-177.Search in Google Scholar

58. Piria M., Simonović P., Zanella D., Ćaleta M., Šprem N., Paunović M., Tomljanović T., Gavrilović A., Pecina M., Śpelić I., Matulić D., Rezić A., Aničić I., Safner R. and Treer T., 2018 ‒ Long-term analysis of fish assemblage structure in the middle section of the Sava River – The impact of pollution, flood protection and dam construction, Science of the Total Environment, 143-153.10.1016/j.scitotenv.2018.09.14930227284Search in Google Scholar

59. Popa G.-O., Curtean-Bănăduc A., Bănăduc,D., Florescu I. E., Burcea A., Dudu A., Georgescu S. E. and Costache M., 2016 ‒ Molecular markers reveal reduced genetic diversity in Romanian populations of brown trout, Salmo trutta L., 1758 (Salmonidae), Acta Zoologica Bulgarica, 68, 3, 399-406.Search in Google Scholar

60. Popa G.-O., Dudu A., Bănăduc D., Curtean-Bănăduc A., Barbălată T., Burcea A., Florescu (Gune) I. E., Georgescu S. E. and Costache M., 2017 ‒ Use of DNA barcoding in the assignment of commercially valuable fish species from Romania, Aquatic Living Resources, 30, 20, DOI 10.1051/alr/2017018, 16 June 2017.Search in Google Scholar

61. Popa G.-O., Dudu A., Bănăduc D., Curtean-Bănăduc A., Burcea A., Ureche D., Nechifor R., Georgescu S. E. and Costache M., 2019 ‒ Genetic analysis of populations of brown trout (Salmo trutta L.) from the Romanian Carpathians, Aquatic Living Resources, 32, DOI 10.1051/alr/201902110.1051/alr/2019021Search in Google Scholar

62. Pringle C., 2003 ‒ What is hydrologic and why is it ecologically important? Hydrological Processes, 17, 13, https://doi.org/10.1002/hyp.5145, 2685-2689.10.1002/hyp.5145Search in Google Scholar

63. Radecki-Pawlik A., Plesinski K., Radecki-Pawlik B., Kubon P. and Manson R., 2018 ‒ Hydrodynamic parameters in a flood impacted boulder block ramp: Krzczonówka mountain stream, Polish Carpathians, Journal of Mountain Sciences, 5, 11, 2335-2346, doi.org/10.1007/s11629-018-4893-6.10.1007/s11629-018-4893-6Search in Google Scholar

64. Radecki-Pawlik A., 2013 ‒ On using artificial rapid hydraulic structures (BR) within mountain stream channels – some exploitation and hydraulic problems, Experimental and computational solutions of hydraulic problems, series: GeoPlanet, Rowiński P., Earth and Planetary Sciences, Monograph, Springer, 101-115.10.1007/978-3-642-30209-1_6Search in Google Scholar

65. Radecki-Pawlik A. and Ślizowski R., 1998 ‒ Block ramps as the ecological element within river engineering works, Bystrze o zwiększonej szorstkości jako element ekologicznej stabilizacji potoków górskich, Przegląd Naukowy, SGGW, 15, 153-162. (in Polish)Search in Google Scholar

66. Rowinski P. and Radecki-Pawlik A., 2015 ‒ Rivers – Physical, Fluvial and Environmental Processes, Springer, Series: GeoPlanet: Earth and Planetary Sciences, 684, 479-496.10.1007/978-3-319-17719-9Search in Google Scholar

67. Schmutz S. and Mielach C., 2013 ‒ Measures for ensuring fish migration at transversal structures – technical paper, International Comission for the Protection of the Danube River, Vienna, 52.Search in Google Scholar

68. Sender J., Maślanko W., Różańska-Boczula M. and Cianfaglione K., 2017 ‒ A new multi-criteria method for the ecological assessment of lakes: A case study from the Transboundary Biosphere Reserve “West Polesie” (Poland), March 2017, Journal of Limnology, 76, s1, 1-32, DOI:10.4081/jlimnol.2017.1639.10.4081/jlimnol.2017.1639Search in Google Scholar

69. Simian C., Georgiev V. and Curtean-Bănăduc A., 2009 – Study on the biodiversity-biotope factors’ relations, Proceedings of the 10th WSEAS International Conference on Mathematics and Computers in Biology and Chemistry, Mastorakis N. E., Croitoru A., Balas V. E., Son E. and Mladenov V. (eds), Book series: Recent advances in Biology and Biomedicine, 184.Search in Google Scholar

70. Simian C., Stoica F. and Curtean-Bănăduc A., 2008 – Multi-Agent System model for optimization the monitoring process within a Natura 2000 site, Mathematics and Computers in Biology and Chemistry, Vlădăreanu L., Chiroiu V., Bratu P. and Magheti I. (eds), Book series: Recent advances in Biology and Biomedicine, 212.Search in Google Scholar

71. Teppel A. and Tymiński T., 2013 ‒ Hydraulic research for successful fish migration improvement - “nature-like” fishways, Civil and Environmental Engineering Reports, 10.Search in Google Scholar

72. Travade F. and Larinier M. 2002 ‒ Fishways: biological basis, design criteria and monitoring, chapter 7 fish locks and lifts, Bulletin Français de la Pêche et de la Pisciculture, supplement 364, 102-118.Search in Google Scholar

73. Trichkova T., Stefanov T., Vassilev M. and Zivkov M., 2009 ‒ Fish species diversity in the rivers of the north-west Bulgaria, Transylvanian Review of Systematical and Ecological Research, 8, The Wetlands Diversity, 161-168.Search in Google Scholar

74. Tutman P., Buj I., Ćaleta M., Hamzić A., Korjenić E., Adrović A. and Glamuzina B., 2019 – Status and distribution of spined loaches (Cobitidae) and stone loaches (Nemacheilidae) in Bosnia and Herzegovina, Folia Zoologica, 66, 2, 211-226.10.25225/fozo.v66.i4.a2.2017Search in Google Scholar

75. Tymiński T. and Kałuża T., 2013 ‒ Effect of vegetation on flow conditions in the “nature-like“ fishways, Annual Set of The Environment Protection, 15, 348-360.Search in Google Scholar

76. Vădineanu A. and Preda A., 2008 ‒ Watereshed management in Romania: challenges and opportunities, in: Sustainable Use and Development of Watersheds, Gönenç I. E., Vădineanu A., Wolflin J. P. and Russo R. C., (eds), NATO Science for Peace and Security Series (Series C: Environmental Security), Springer, Dordrecht, DOIhttps://doi.org/10.1007/978-1-4020-8558-1_8 Online ISBN978-1-4020-8558-1, 113-132.10.1007/978-1-4020-8558-1_8Search in Google Scholar

77. Voicu R., Bănăduc D., Baumgartner L. J., Voicu L. and Curtean-Bănăduc A., 2018 ‒ Upper Caraş River (Danube Watershed) fish populations fragmentation ‒ technical rehabilitation proposal, Transylvanian Review of Systematical and Ecological Research, 20.1, The Wetlands Diversity, 69-86.10.1515/trser-2018-0006Search in Google Scholar

78. Voicu R. and Baki P., 2017a ‒ Improving upstream and downstream fish passage at Retiş Dam on Hârtibaciu River ‒ Sibiu County (Transylvania), Annals of Valahia University of Târgovişte, Geographical Series, 17, 1, 47-57.10.1515/avutgs-2017-0005Search in Google Scholar

79. Voicu R., Voicu L., Curtean-Bănăduc A. and Bănăduc D., 2017b ‒ Restoring the fish fauna connectivity of the Hârtibaciu River – Retiș Dam study case (Transylvania, Romania), Acta Oecologica Carpatica, X.II, 10, 2, 73-86.Search in Google Scholar

80. Voicu R., Costescu C., Voicu L. and Lengher-Bica N., 2015 ‒ Solution for ichthyofauna migration upstream ‒ downstream of the two spillways located near Mănăştur Dam on the Someşul Mic River in the Cluj Napoca City (Romania), Lakes, reservoirs and ponds, 9.1, 43-55.Search in Google Scholar

81. Voicu R. and Merten E., 2014 ‒ Creating a system for upstream ‒ downstream fish migration over the first and the second discharge sills downstream of Mănăştur dam on the Someşul Mic River (Cluj Napoca, Transylvania, România), Transylvanian Review of Systematical and Ecological Research, 16.2, The Wetlands Diversity, 163-182.10.1515/trser-2015-0025Search in Google Scholar

82. Wang Z. Y., Lee J. H. W. and Melching C. S., 2015 ‒ Integrated river management, in River Dynamics and Integrated River Management, Springer, Berlin, Heidelberg, DOIhttps://doi.org/10.1007/978-3-642-25652-3_12 Online ISBN978-3-642-25652-3 Springer, Berlin, Heidelberg, 725-800.Search in Google Scholar

83. Ward J. V., 1989 ‒ The four dimensional nature of lotic ecosystems, Journal of the North American Benthological Society, 8, 1, 2-8, DOI 10.2307/1467397.10.2307/1467397Search in Google Scholar

84. Wetzel R. G., 2001 ‒ Inland waters: understanding is essential for the future, Limnology (3rd edition), B., River Management and Restoration, ISBN 9780127447605, 1006.10.1016/B978-0-08-057439-4.50030-7Search in Google Scholar

85. Wiens J. A., 2002 ‒ Riverine landscapes: taking landscape ecology into the water, Freshwater Biology, 47, 501-515.10.1046/j.1365-2427.2002.00887.xSearch in Google Scholar

86. WWF, 2006 ‒ Free-flowing rivers: economic luxury or ecologic necessity? World Wildlife Fund, Zeist, 40.Search in Google Scholar

87. Zwick P., 1992 ‒ Stream habitat fragmentation – a threat to biodiversity, Biodiversity and Conservation, 1, 2, 80-97, DOI https://doi.org/10.1007/BF00731036, Kluwer Academic Publishers, Online ISSN 1572-9710.Search in Google Scholar

eISSN:
2344-3219
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Ecology