Open Access

Some Fractal Properties of Sets Having the Moran Structure


Cite

[1] ATTIA, N.—SELMI, B.: A mltifractal formalism for Hewitt-Stromberg masures J. Geom. Anal. 31 (2021), 825–862.10.1007/s12220-019-00302-3 Search in Google Scholar

[2] ATTIA, N.—SELMI, B.: On the mutual singularity of Hewitt-Stromberg measures,Analysis Mathematica 47 (2021), 273–283.10.1007/s10476-021-0079-5 Search in Google Scholar

[3] CANTOR, G.:Üeber die einfachen Zahlensysteme,Z. Math. Phys. 14 (1869), 121–128. (In German) Search in Google Scholar

[4] DIMARTINO, R.—URBINA, W. O.: On Cantor-like sets and Cantor-Lebesgue singular functions, https://arxiv.org/pdf/1403.6554.pdf Search in Google Scholar

[5] DIMARTINO, R.—URBINA, W. O.: Excursions on Cantor-like Sets, https://arxiv.org/pdf/1411.7110.pdf Search in Google Scholar

[6] DOUZI, Z.—SELMI, B.: On the mutual singularity of multifractal measures, Electron. Res. Arch. 28 (2020), 423–432.10.3934/era.2020024 Search in Google Scholar

[7] DOUZI, Z. ET AL.: Another example of the mutual singularity of multifractal measures, Proyecciones 40 (2021), 17–33.10.22199/issn.0717-6279-2021-01-0002 Search in Google Scholar

[8] DOUZI, Z.—SELMI, B.: On the mutual singularity of Hewitt-Stromberg measures for which the multifractal functions do not necessarily coincide, Ric. Mat. https://doi.org/10.1007/s11587-021-00572-610.1007/s11587-021-00572-6 Search in Google Scholar

[9] DOUZI, Z.—SELMI, B.—MABROUK, A. B.: The refined multifractal formalism of some homogeneous Moran measures, Eur. Phys. J. Spec. Top. https://doi.org/10.1140/epjs/s11734-021-00318-310.1140/epjs/s11734-021-00318-3 Search in Google Scholar

[10] FALCONER, K.: Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chi-chester, 1997.10.2307/2533585 Search in Google Scholar

[11] FALCONER, K.: Fractal Geometry: Mathematical Foundations and Applications. Second edition. John Wiley & Sons, Inc., Hoboken, NJ, 2003.10.1002/0470013850 Search in Google Scholar

[12] HUA, S.—RAO, H.—WEN, Z. ET AL.: On the structures and dimensions of Moran sets, Sci. China Ser. A-Math. 43 (2000), no. 8, 836–852. DOI:10.1007/BF02884183.10.1007/BF02884183 Search in Google Scholar

[13] HUANG, L.—LIU, Q.—WANG, G.: Multifractal analysis of Bernoulli measures on a class of homogeneous Cantor sets,J.Math. Anal.Appl. 491 (2020), no. 2, 124362, 15 pp.10.1016/j.jmaa.2020.124362 Search in Google Scholar

[14] MANCE, B.: Number theoretic applications of a class of Cantor series fractal functions I, https://arxiv.org/pdf/1310.2377.pdf Search in Google Scholar

[15] MANDELBROT, B. B.: Fractals: Form, Chance and Dimension. Freeman, San Francisco, 1977. Search in Google Scholar

[16] MORAN, P. A. P.: Additive functions of intervals and Hausdorff measure,Math. Proc. Cambridge Philos. Soc. 42 (1946), no. 1, 15–23. DOI:10.1017/S0305004100022684.10.1017/S0305004100022684 Search in Google Scholar

[17] OLSEN, L.: A multifractal formalism,Adv.Math. 116 (1995), 82–196.10.1006/aima.1995.1066 Search in Google Scholar

[18] PESIN, Y. — WEISS, H.: On the Dimension of Deterministic and Random Cantor-like Sets, Symbolic Dynamics, and the Eckmann-Ruelle Conjecture, Commun. Math. Phys 182 (1996), 105–153. DOI:10.1007/BF02506387.10.1007/BF02506387 Search in Google Scholar

[19] POLLICOTT, M.—SIMON, K.: The Hausdorff dimension of λ-expansions with deleted digits, Trans.Amer. Math.Soc. 347 (1995), 967–983. https://doi.org/10.1090/S0002-9947-1995-1290729-010.1090/S0002-9947-1995-1290729-0 Search in Google Scholar

[20] ROYCHOWDHURY, M. K.—BILEL SELMI, B.: Local dimensions and quantization dimensions in dynamical systems,J.Geom. Anal. 31 (2021), 6387–6409.10.1007/s12220-020-00537-5 Search in Google Scholar

[21] SALEM, R.:, On some singular monotonic functions which are stricly increasing,Trans. Amer. Math. Soc. 53 (1943), 423–439.10.1090/S0002-9947-1943-0007929-6 Search in Google Scholar

[22] SELMI, B.: The relative multifractal analysis, review and examples, Acta Sci. Math. (Szeged) 86 (2020), 635–666.10.14232/actasm-020-801-8 Search in Google Scholar

[23] SELMI, B.: A review on multifractal analysis of Hewitt-Stromberg measures,J. Geom. Anal. 32 (2022), no. 1, 1–44.10.1007/s12220-021-00753-7 Search in Google Scholar

[24] SELMI, B.: The mutual singularity of multifractal measures for some non-regularity Moran fractals, Bulletin Polish Acad. Sci. Math. 69 (2021), 21–35.10.4064/ba210216-9-10 Search in Google Scholar

[25] SERBENYUK, S. O.: Topological, metric and fractal properties of one set defined by using the s-adic representation, In: XIV International Scientific Kravchuk Conference: Conference materials II, Kyiv: National Technical University of Ukraine “KPI” 2012. p. 220. (In Ukrainian) https://www.researchgate.net/publication/311665455 Search in Google Scholar

[26] SERBENYUK, S. O.: Topological, metric and fractal properties of sets of class generated by one set with using the s-adic representation, In: International Conference Dynamical Systems and their Applications Abstracts, Kyiv: Institute of Mathematics of NAS of Ukraine, 2012. p. 42. (In Ukrainian) https://www.researchgate.net/publication/311415778 Search in Google Scholar

[27] SERBENYUK, S. O.: Topological, metric and fractal properties of the set with parameter, that the set defined by s-adic representation of numbers, In: International Conference Modern Stochastics: Theory and Applications III, (Dedicated to 100th anniversary of B. V. Gnedenko and 80th anniversary of M. I. Yadrenko:) Abstracts, Kyiv: Taras Shevchenko National University of Kyiv, 2012. p. 13, https://www.researchgate.net/publication/311415501 Search in Google Scholar

[28] SERBENYUK, S. O.: Topological, metric, and fractal properties of one set of real numbers such that it defined in terms of the s-adic representation, Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1. Phizyko-matematychni Nauky, [Trans. Natl. Pedagog. Mykhailo Dragomanov University. Ser. 1. Phys. Math.] 11 (2010), 241–250. (In Ukrainian) https://www.researchgate.net/publication/292606441 Search in Google Scholar

[29] SERBENYUK, S. O.: Topological, metric properties and using one generalizad set determined by the s-adic representation with a parameter, Naukovyi Chasopys NPU im. M. P. Dragomanova. Seria 1Phizyko-matematychni Nauky [Trans. Natl. Pedagog. Mykhailo Dragomanov University. Ser. 1. Phys. Math.] 12 (2011), 66–75. (In Ukrainian) https://www.researchgate.net/publication/292970196 Search in Google Scholar

[30] SERBENYUK, S. O.: On some sets of real numbers such that defined by nega-s-adic and Cantor nega-s-adic representations, Trans. Natl. Pedagog. Mykhailo Dragomanov Univ. Ser. 1. Phys. Math. 15 (2013), 168–187. (In Ukrainian) https://www.researchgate.net/publication/292970280 Search in Google Scholar

[31] SERBENYUK, S.: Representation of real numbers by the alternating Cantor series, Integers 17 (2017), Paper no. A 15, 27 pp. Search in Google Scholar

[32] SERBENYUK, S.: One one class of fractal sets, https://arxiv.org/pdf/1703.05262.pdf Search in Google Scholar

[33] SERBENYUK, S.: On one class of functions with complicated local structure,Šiauliai Mathematical Seminar 11 (2016), no. 19, 75–88. Search in Google Scholar

[34] SERBENYUK, S. O.: Functions, that defined by functional equations systems in terms of Cantor series representation of numbers, Naukovi Zapysky NaUKMA 165 (2015), 34–40. (In Ukrainian), https://www.researchgate.net/publication/292606546 Search in Google Scholar

[35] SERBENYUK, S. O.: Continuous Functions with Complicated Local Structure Defined in Terms of Alternating Cantor Series Representation of Numbers,J.Math. Phys. Anal. Geom. 13 (2017), no. 1, 57–81.10.15407/mag13.01.057 Search in Google Scholar

[36] SERBENYUK, S. O.: Non-differentiable functions defined in terms of classical representations of real numbers,J.Math. Phys.Anal. Geom. 14 (2018), no. 2, 197–213.10.15407/mag14.02.197 Search in Google Scholar

[37] SERBENYUK, S.: On one fractal property of the Minkowski function,Rev.R. Acad. Cienc. Exactas Fís.Nat.Ser.AMat. RACSAM 112 (2018), no. 2, 555–559.10.1007/s13398-017-0396-5 Search in Google Scholar

[38] SERBENYUK, S.: On one application of infinite systems of functional equations in function theory, Tatra Mt. Math. Publ. 74 (2019), 117–144. https://doi.org/10.2478/tmmp-2019-002410.2478/tmmp-2019-0024 Search in Google Scholar

[39] SERBENYUK, S.: One distribution function on the Moran sets, Azerb. J. Math. 10 (2020), no. 2, 12–30 (arXiv:1808.00395). Search in Google Scholar

[40] SERBENYUK, S.: Certain singular distributions and fractals, Tatra Mt. Math. Publ. 79 (2021), no. 2, 163–198 (arXiv:2005.02485), https://doi.org/10.2478/tmmp-2021-002610.2478/tmmp-2021-0026 Search in Google Scholar

[41] SERBENYUK, S.: Nega- ˜Q-representation as a generalization of certain alternating representations of real numbers, Bulletin of the Taras Shevchenko National University of Kyiv Mathematics and Mechanics 35 (2016), no. 1, 32–39. (In Ukrainian) https://www.researchgate.net/publication/308273000 Search in Google Scholar

[42] WU, M.: The multifractal spectrum of some Moran measures, Sci. China. Ser. A Math. 48 (2005), 97–112.10.1360/022004-10 Search in Google Scholar

[43] WU, M.: The singularity spectrum f (α) of some Moran fractals, Monatsh. Math. 144 (2005), 141–155.10.1007/s00605-004-0254-3 Search in Google Scholar

[44] WU, M.—XIAO, J.: The singularity spectrum of some non-regularity Moran fractals, Chaos, Solitons Fractals 44 (2011), 548–557.10.1016/j.chaos.2011.05.002 Search in Google Scholar

[45] XIAO, J.—WU, M.: The multifractal dimension functions of homogeneous Moran measure,Fractals 16 (2008), 175–185.10.1142/S0218348X08003892 Search in Google Scholar

[46] XIAO, J.—WU, M.: The multifractal dimension functions of homogeneous Moran measure,Fractals 16 (2008), 175–185.10.1142/S0218348X08003892 Search in Google Scholar

[47] YUAN, Z.: Multifractal spectra of Moran measures without local dimension, Nonlinearity 32 (2019), 5060–5086.10.1088/1361-6544/ab45d7 Search in Google Scholar

eISSN:
1338-9750
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Mathematics, General Mathematics