1. bookVolume 75 (2020): Issue 1 (April 2020)
    Applied Mathematics'19
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
access type Open Access

3D Cell Image Segmentation by Modified Subjective Surface Method

Published Online: 24 Apr 2020
Page range: 147 - 162
Received: 16 May 2019
Journal Details
License
Format
Journal
eISSN
1338-9750
First Published
12 Nov 2012
Publication timeframe
3 times per year
Languages
English
Abstract

In this work, we focused on 3D image segmentation where the segmented surface is reconstructed by the use of 3D digital image information and information from thresholded 3D image in a local neighbourhood. To this end, we applied a mathematical model based on the level set formulation and numerical method which is based on the so-called reduced diamond cell approach. The segmentation approach is based on surface evolution governed by a nonlinear PDE, the modified subjective surface equation. This is done by defining the input to the edge detector function as the weighted sum of norm of presmoothed 3D image and norm of presmoothed thresholded 3D image in a local neighbourhood. For the numerical discretization, we used a semi-implicit finite volume scheme. The method was applied to real data representing 3D microscopy images of cell nuclei within the zebrafish pectoral fin.

Keywords

MSC 2010

[1] CORSARO, S.—MIKULA, K.—SARTI, A.—SGALLARI, F.: Semi-implicit co-volume method in 3D image segmentation, SIAM J. Sci. Comput. 28 (2006), no. 6, 2248–2265.Search in Google Scholar

[2] EVANS, L. C.—SPRUCK, J.:, Motion of level sets by mean curvature I, J. Differential Geom. 33 (1991), 635–681. DOI:10.4310/jdg/121444655910.4310/jdg/1214446559Search in Google Scholar

[3] FAURE, E.—SAVY, T.—RIZZI, B.—MELANI, C.—DRBLÍKOVÁ, O.—FABREGÈS, D.—ŠPIR, R.—HAMMONS, M.—ČUNDERLÍK, R.—RECHER, G.—LOMBARDOT, B.—DULOQUIN, L.—COLIN, I.—KOLLÁR, J.—DESNOULEZ, S.—AFFATICATI, P.—MAURY, B.—BOYREAU, A.—NIEF, J.—CALVAT, P.—VERNIER, P.— FRAIN, M.—LUTFALLA, G.—KERGOSIEN, Y.—SURET, P.—REMEŠÍKOVÁ, M.—DOURSAT, R.—SARTI, A.—MIKULA, K.—PEYRIÉRAS, N.— BOURGINE, P.: An algorithmic workflow for the automated processing of 3D+time microscopy imaging of developing organisms and reconstruction of their cell lineage, Nature Commun. 7 (2016), February 2016. Article number: 8674, DOI:10.1038/ncomms9674, https://www.math.sk/mikula/NCOMMS-15-07907-T_MainArticle.pdfSearch in Google Scholar

[4] FROLKOVIČ, P.—MIKULA, K.—PEYRIÉRAS, N.—SARTI, A.: A counting number of cells and cell segmentation using advection-diffusion equations,Kybernetika, 43 (2007), no. 6, 817–829.Search in Google Scholar

[5] KÓSA, B.—MIKULA, K.—UBA, M. O.—WEBERLING, A.—CHRISTODOULOU, N.— ZERNICKA-GOETZ, M.: 3D Image Segmentation Supported by A Point Cloud, Discrete and Continuous Dynamical Systems - Series S (DCDS-S), (Submitted).Search in Google Scholar

[6] MIKULA, K.—SARTI, A.—SGALLARI, F.: Co-volume level set method in subjective surface based medical image segmentation. In: Handbook of Medical Image Analysis: Segmentation and Registration Models (J. Suri et al., eds.), Springer, New York, 2005, pp. 583–626.Search in Google Scholar

[7] MIKULA, K.—REMEŠÍKOVÁ, M.: Finite volume schemes for the generalized subjective surface equation in image segmentation,Kybernetika 4, no. 4 (2009), 646–656.Search in Google Scholar

[8] MIKULA, K.—PEYRIÉRAS, N.—REMEŠÍKOVÁ, M.—SARTI, A.: 3D embryogenesis image segmentation by the generalized subjective surface method using the finite volume technique.In: Finite Volumes for Complex Applications V: Problems and Perspectives (R. Eymard, J. M. Herard, eds.), ISTE and WILEY, London, 2008, pp. 585–592.Search in Google Scholar

[9] MIKULA, K.—PEYRIÉRAS, N.—REMEŠÍKOVÁ, M.—STAŠOVÁ, O.: Segmentation and analysis of 3D zebrafish cell image data.In: Proc. of the 3rd International Congress on Image and Signal Processing CISP-BMEI 2010, Yantai, China, Vol. 3 (2010), pp. 1444–1448.Search in Google Scholar

[10] PERONA, P.—MALIK, J.:, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence12 (1990), 629–639. DOI:10.1109/34.5620510.1109/34.56205Search in Google Scholar

[11] SARTI, A.—MALLADI, R.—SETHIAN, J.A.: Subjective surfaces: a method for completing missing boundaries.In: Proc. Natl. Acad. Sci. USA 97 (2000), no. 12, pp. 6258–6263.Search in Google Scholar

[12] SARTI, A.—MALLADI, R.—SETHIAN, J. A.:, Subjective Surfaces: a geometric model for boundary completion, Int. J. Comput. Vis. 46 (2002), no. 3, 201–221.Search in Google Scholar

[13] ZANELLA, C.—RIZZI, B.—MELANI, C.—CAMPANA, M.—BOURGINE, P.— MIKULA, K.—PEYRIÉRAS, N.—SARTI, A.: Segmentation of cells from 3-d confocal images of live zebrafish embryo.In: Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007 (2007), 6027–30.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo