Cite

[1] Kindracki, J., Wolanski, P. and Gut, Z., 2011, “Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures,” Shock Waves, 21(2), pp. 75-84. 10.1007/s00193-011-0298-y.10.1007/s00193-011-0298-y Search in Google Scholar

[2] Shao, Y.-T., Liu, M. and Wang, J.-P., 2010, “Numerical Investigation of Rotating Detonation Engine Propulsive Performance,” Combustion Science and Technology, 182(11-12), pp. 1586-1597. 10.1080/00102202.2010.497316.10.1080/00102202.2010.497316 Search in Google Scholar

[3] Yetao, S., Meng, L. and Jianping, W., 2010, “Continuous Detonation Engine and Effects of Different Types of Nozzle on Its Propulsion Performance,” Chinese Journal of Aeronautics, 23(6), pp. 647-652. 10.1016/S1000-9361(09)60266-1.10.1016/S1000-9361(09)60266-1 Search in Google Scholar

[4] Liu, S.-J., Lin, Z.-Y., Sun, M.-B. and Liu, W.-D., 2011, “Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure,” Chinese Physics Letters, 28(9), p. 094704. 10.1088/0256-307x/28/9/094704.10.1088/0256-307X/28/9/094704 Search in Google Scholar

[5] Liu, M., Zhou, R. and Wang, J.-P., 2011, “Three-dimensional simulation of rotating detonation engines,” presented at the IWDE, Tokyo. Search in Google Scholar

[6] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2007, “Numerical simulation of the continuous rotating hydrogen-oxygen detonation with a detailed chemical mechanism,” Moscow, Russia, pp. 19-22, Available: http://wehsff.imamod.ru/pages/Section6 Propulsion Physics, Airbreathing Propulsion/Kudryavtsev.pdf Search in Google Scholar

[7] Davidenko, D. M. et al., 2009, “Continuous detonation wave engine studies for space application,” Progress in Propulsion Physics, vol. 1, pp. 353-366. 10.1051/eucass/200901353.10.1051/eucass/200901353 Search in Google Scholar

[8] Davidenko, D. M., Eude, Y., Gökalp, I. and Falempin, F., 2011, “Theoretical and Numerical Studies on Continuous Detonation Wave Engines,” presented at the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, San Francisco, California. 10.2514/6.2011-2334.10.2514/6.2011-2334 Search in Google Scholar

[9] Davidenko, D. M., Gökalp, I. and Kudryavtsev, A. N., 2008, “Numerical Study of the Continuous Detonation Wave Rocket Engine,” presented at the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH. 10.2514/6.2008-2680.10.2514/6.2008-2680 Search in Google Scholar

[10] Hayashi, A. K. et al., 2009, “Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model,” presented at the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2009-633.10.2514/6.2009-633 Search in Google Scholar

[11] Hishida, M., Fujiwara, T. and Wolanski, P., 2009, “Fundamentals of rotating detonations,” Shock Waves, 19(1), pp. 1-10. 10.1007/s00193-008-0178-2.10.1007/s00193-008-0178-2 Search in Google Scholar

[12] Kindracki, J., Kobiera, A., Wolanski, P., Gut, Z., Folusiak, M. and Swiderski, K., 2011, “Experimental and numerical study of the rotating detonation engine in hydrogen-air mixtures,” Progress in Propulsion Physics, vol. 2, pp. 555-582. 10.1051/eucass/201102555.10.1051/eucass/201102555 Search in Google Scholar

[13] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Three-dimensional modeling of the Rotating Detonation Engine,” presented at the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus. Search in Google Scholar

[14] Yi, T.-H., Lou, J., Turangan, C., Khoo, B. C. and Wolanski, P., 2010, “Effect of Nozzle Shapes on the Performance of Continuously Rotating Detonation Engine,” presented at the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida. 10.2514/6.2010-152.10.2514/6.2010-152 Search in Google Scholar

[15] Schwer, D. and Kailasanath, K., 2010, “Numerical Investigation of Rotating Detonation Engines,” in 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2010-6880 Search in Google Scholar

[16] Schwer, D. and Kailasanath, K., 2012, “Feedback into Mixture Plenums in Rotating Detonation Engines,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2012-617 Search in Google Scholar

[17] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2011, “Energy Transfer in a Rotating Detonation Engine,” in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 0 vols., American Institute of Aeronautics and Astronautics.10.2514/6.2011-6045 Search in Google Scholar

[18] Nordeen, C. A., Schwer, D., Schauer, F., Hoke, J., Barber, T. and Cetegen, B. M., 2016, “Role of inlet reactant mixedness on the thermodynamic performance of a rotating detonation engine,” Shock Waves, 26(4), pp. 417-428. 10.1007/s00193-015-0570-7.10.1007/s00193-015-0570-7 Search in Google Scholar

[19] Schwer, D. and Kailasanath, K., 2013, “Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels,” Proceedings of the Combustion Institute, 34(2), pp. 1991-1998. 10.1016/j.proci.2012.05.046.10.1016/j.proci.2012.05.046 Search in Google Scholar

[20] Wolanski, P., 2013, “Detonative propulsion,” Proceedings of the Combustion Institute, 34(1), pp. 125-158. 10.1016/j.proci.2012.10.005.10.1016/j.proci.2012.10.005 Search in Google Scholar

[21] Wolanski, P., 2015, “Application of the Continuous Rotating Detonation to Gas Turbine,” Applied Mechanics and Materials, vol. 782, pp. 3-12, 10.4028/www.scientific.net/AMM.782.3.10.4028/www.scientific.net/AMM.782.3 Search in Google Scholar

[22] Wolanski, P. et al., 2018, Development of Gasturbine with Detonation Chamber. In: Li, J.M., Teo, C., Khoo, B., Wang, J.P., Wang, C. (eds) Detonation Control for Propulsion. Shock Wave and High Pressure Phenomena. Springer, Cham, pp. 23-37. Chap. 2. 10.1007/978-3-319-68906-7_2.10.1007/978-3-319-68906-7_2 Search in Google Scholar

[23] Swiderski, K., 2013, “Numerical modeling of the rotating detonation combustion chamber,” PhD Thesis, WUT, Warsaw. Search in Google Scholar

[24] Berger, M. J. and Oliger, J., 1984, “Adaptive mesh refinement for hyperbolic partial differential equations,” Journal of Computational Physics, 53(3), pp. 484-512. 10.1016/0021-9991(84)90073-1.10.1016/0021-9991(84)90073-1 Search in Google Scholar

[25] Vollmer, D. B., 2003, “Adaptive mesh refinement using subdivision of Unstructured elements for conservation laws,” MSc Thesis, University of Reading. Search in Google Scholar

[26] Lian, Y., Hsu, K., Shao, Y., Lee, Y., Jeng, Y. and Wu, J., 2006, “Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications,” Computer Physics Communications, 175(11-12), pp. 721-737. 10.1016/j.cpc.2006.05.010.10.1016/j.cpc.2006.05.010 Search in Google Scholar

[27] Azevedo, J. L. F. and Korzenowski, H., 2009, “An assessment of unstructured grid finite volume schemes for cold gas hypersonic flow calculations,” Journal of Aerospace Technology and Management, 1(2), pp. 135-152.10.5028/jatm.2009.0102135152 Search in Google Scholar

[28] Ripley, R. C., Lien, F.-S. and Yovanovich, M. M., 2004, “Adaptive Unstructured Mesh Refinement of Supersonic Channel Flows,” International Journal of Computational Fluid Dynamics, 18(2), pp. 189-198. 10.1080/10618560310001634168.10.1080/10618560310001634168 Search in Google Scholar

[29] Ito, K. Kunugi, T. and Ohshima, H., 2010, Development and Verification of Unstructured Adaptive Mesh Technique with Edge Compatibility, Journal of Power and Energy Systems, vol. 4, pp. 72-83. 10.1299/jpes.4.72.10.1299/jpes.4.72 Search in Google Scholar

[30] Berger, M. J. and Colella, P., 1989, “Local adaptive mesh refinement for shock hydrodynamics,” Journal of Computational Physics, 82(1), pp. 64-84. 10.1016/0021-9991(89)90035-1.10.1016/0021-9991(89)90035-1 Search in Google Scholar

[31] Boden, E. F., 1997, “An adaptive gridding technique for conservation laws on complex domains,” PhD thesis, Cranfield University. Search in Google Scholar

[32] Mavriplis, D. J., 1995, “Multigrid techniques for unstructured meshes,” NASA Contractor Report 195070, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA. Available: https://apps.dtic.mil/dtic/tr/fulltext/u2/a294610.pdf Search in Google Scholar

[33] Berger, M. J., 1987, “On Conservation at Grid Interfaces,” SIAM Journal on Numerical Analysis, vol. 24, p. 967. 10.1137/0724063.10.1137/0724063 Search in Google Scholar

[34] Folusiak, M., 2013, “Development of simulation methods of rotating detonation in complex geometries,” PhD thesis, Warsaw University of Technology, Warsaw. Search in Google Scholar

[35] Liang, Z., Browne, S., Deiterding, R. and Shepherd, J. E., 2007, “Detonation front structure and the competition for radicals,” Proceedings of the Combustion Institute, 31(2), pp. 2445-2453. 10.1016/j.proci.2006.07.244.10.1016/j.proci.2006.07.244 Search in Google Scholar

[36] Lu, T., Law, C. K. and Ju, Y., 2003, “Some aspects of chemical kinetics in chapman-jouguet detonation: Induction length analysis,” Journal of Propulsion and Power, 19(5), pp. 901-907.10.2514/2.6181 Search in Google Scholar

[37] Petersen, E. L. and Hanson, R. K., 1999, “Reduced kinetics mechanisms for ram accelerator combustion,” Journal of propulsion and power, 15(4), pp. 591-600.10.2514/2.5468 Search in Google Scholar

[38] Petersen, E. L., Davidson, D. F. and Hanson, R. K., 1999, “Ignition delay times of ram accelerator CH4/O2/diluent mixtures,” Journal of Propulsion and Power, 15(1), pp. 82-91.10.2514/2.5394 Search in Google Scholar

[39] Folusiak, M., Swiderski, K., Kobiera, A. and Wolanski, P., 2009, “Two-dimensional modeling of the rotating detonation with fuel injection,” presented at the European Conference for AeroSpace Sciences, Versailles, France. Search in Google Scholar

[40] Wolanski, P., 2011, “Rotating detonation wave stability,” presented at the 23rd International Colloquium on the Dynamics of Explosions and Reactive Systems, University of California, Irvine, USA. Search in Google Scholar

[41] Eude, Y., Davidenko, D. and Izrar, B., 2011, “Simulation of continuous detonation in H2-O2 mixture using adaptive mesh refinement,” presented at the 20ème Congrès Franccais de Mécanique, France. Available: http://documents.irevues.inist.fr/handle/2042/46347. Search in Google Scholar

eISSN:
2545-2835
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics