Cite

[1] Wendeker, M., Gęca, M., Szlachetka, M., Grabowski, Ł., Sochaczewski, R. and Barański, G., 2011, “Modelling an aircraft fuel system”, Combustion Engines, PTNSS–2011–SC–033. Search in Google Scholar

[2] López, E. J. and Nigro, N. M., 2000 “Validation of a 0D/1D Computational Code for The Design of Several Kind of Internal Combustion Engines”, Technical report, Centro Internacional de Métodos Computacionales en Ingeniería, Instituto de Desarrollo Tecnológico para la Industria Química. Search in Google Scholar

[3] Alqahtani, A., Shokrollahihassanbarough, F., and Wyszynski, M. L., 2015 “Thermodynamic Simulation Comparison of AVL BOOST and Ricardo WAVE for HCCI and SI Engines Optimisation,”, Combustion Engines 161(2): pp. 68-72.10.19206/CE-116893 Search in Google Scholar

[4] Barros, J. E. M., 2003, “Estudo de Motores de Combustão Interna Aplicando Análise Orientada a Objetos,” Master’s thesis, Universidade Federal de Minas Gerais. Search in Google Scholar

[5] Coble, A. R., Smallbone, A., Bhave, A., Mosbach, S., Kraft, M., Niven, P., and Amphlet, S., 2011, “Implementing Detailed Chemistry and In-Cylinder Stratification Into 0/1-D IC Engine Cycle Simulation Tools”, SAE Technical Paper 2011-01-0849.10.4271/2011-01-0849 Search in Google Scholar

[6] Guzzella, L. and Onder, CH., 2010. “Introduction to modelling and control of internal combustion engine systems”, Springer, Berlin.10.1007/978-3-642-10775-7 Search in Google Scholar

[7] Baumgarten, C., 2010, “Mixture Formation in Internal Combustion Engine”, Springer-Verlag, Berlin Heidelberg, Stiesch, G., 2003, “Modeling Engine Spray and Combustion Processes”, Springer-Verlag, Berlin Heidelberg, AVL BOOST plc. 2013. AVL Software, www.avl.com/BOOST. Search in Google Scholar

[8] Emadi, A., Ehsani, M., 2000, “Aircraft power systems: technology, state of the art, and future trends”, Aerosp Electron Syst Mag IEEE, 15(1).10.1109/62.821660 Search in Google Scholar

[9] Roboam, X., 2011, “New trends and challenges of electrical networks embedded in “more electrical aircraft” Proceedings of 2011 IEEE International Symposium on Industrial Electronics (ISIE), pp. 26-31.10.1109/ISIE.2011.5984130 Search in Google Scholar

[10] Pietrykowski, K., 2011, “Research on the mixture formation process in a radial engine”, Combustion Engines, PTNSS–2011–SC–015. Search in Google Scholar

[11] Gęca, M., Wendeker, M., Litak, G., 2012, “Combustion variability and uniqueness in cylinder of a large power radial engine, Journal of Vibroengineering”, Vol. 14, Issue 2., pp. 582-591. Search in Google Scholar

[12] Grabowski, Ł., Tulwin, T., Geca, M. and Karpiński, P., 2016, “Validation Study of Radial Aircraft Engine Model”, International Journal of Aerospace and Mechanical Engineering, 9(3), pp. 2316-2316. Search in Google Scholar

[13] Wendeker, M., Kacejko, P., Duk, M. and Karpiński, P., 2016, “Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine”, International Journal of Aerospace and Mechanical Engineering, 9(3), pp. 2320-2320. Search in Google Scholar

[14] Pietrykowski, K. and Gęca, M., 2014, „Simulation studies of the aircraft radial engine” (in Polish: “Badania symulacyjne lotniczego silnika gwiazdowego”), Logistyka 6/2014. Search in Google Scholar

[15] Magryta P., Tulwin, T. and Karpiński, P., 2016, “The Charge Exchange and Mixture Formation Model in the ASz-62IR Radial Aircraft Engine”, International Journal of Aerospace and Mechanical Engineering, 9(3), pp. 2319-2319. Search in Google Scholar

[16] Duk, M., Grabowski, Ł. and Magryta P., 2016, “Operation Cycle Model of ASz62IR Radial Aircraft Engine”, International Journal of Aerospace and Mechanical Engineering, 9(3), pp. 2322-2322. Search in Google Scholar

eISSN:
2545-2835
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Materials Sciences, Physics