1. bookVolume 17 (2022): Issue 1 (December 2022)
Journal Details
License
Format
Journal
eISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English
Open Access

Experimental Research on the Thermal Instability of Fiber Polypropylene Concrete at 250 °C

Published Online: 14 Jan 2023
Volume & Issue: Volume 17 (2022) - Issue 1 (December 2022)
Page range: 1 - 14
Journal Details
License
Format
Journal
eISSN
1338-7278
First Published
29 Mar 2013
Publication timeframe
2 times per year
Languages
English

[1] Kheddache, L., Chahour, K. and Safi, B. “Effet de la répartition des fibres sur le comportement mécanique en flexion des mortiers autoplaçants” Articles scientifiques sélectionnés - Journal of Civil Engineering, vol.15, no.1, 2020, pp.129-148. https://doi.org/10.1515/sspjce-2020-001210.1515/sspjce-2020-0012 Search in Google Scholar

[2] Lakhal, R. (2011) Elaboration des bétons à hautes performances a base des sous-produit locaux formulation et caractérisation physico-mécanique.» Mémoire de magister, Université Badji Mokhtar,Annaba.. Search in Google Scholar

[3] Kalifa, P., Menneteau, F-D., Quenard, D. (2000) Spalling and pore pressure in HPC at high temperatures. Cement and Concrete Research. 30 (12), 1915-1927.10.1016/S0008-8846(00)00384-7 Search in Google Scholar

[4] Noumowé, A. (1995) Effect of high temperatures (20-600°C) on concrete. Special case of high concrete. PhD thesis. France. National Institute of Applied Sciences of Lyon. Search in Google Scholar

[5] Hager, I. (2004) High temperature behavior of high performance concretes - evolution of the main ones. PhD Thesis. France. National School of Bridges and Roads and the School. Search in Google Scholar

[6] Mindeguia, J. (2009) Experimental contribution to understanding the risks of thermal instability in concretes. PhD thesis. France. University of Pau and the Adour countries. Search in Google Scholar

[7] Aidoud, A., Benouis, A.H. (2018) Investigation of the Evolving Relationship Between the Properties of Ordinary Concrete and High Performance Concrete at High Temperatures. Journal of Materials and Environmental Sciences 9 (4), 1335-1342. Search in Google Scholar

[8] Kalifa, P., Chéné, G., Gallé, C. (2001) High-temperature behaviour of HPC with polypropylene fibres - From. Cement and Concrete Research. 30 (10), 1487-1499.10.1016/S0008-8846(01)00596-8 Search in Google Scholar

[9] Yermak, N., Pliya, P., Beaucour, A-L., Simon, A., Noumowé, A. (2017) Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: Spalling, transfer and mechanical properties. Construction and Building Materials. 132, 240–250.10.1016/j.conbuildmat.2016.11.120 Search in Google Scholar

[10] Yagoub, M. (2009) Assessment of the quality of fiber concrete in situ case of self-placing concrete with mixed fibers. Masters thesis. Algeria. Mohamed Khider University - Biskra. Search in Google Scholar

[11] Hager, I. (2013) Behaviour of cement concrete at high temperature. Bulletin of the Polish Academy of Sciences 61 (1), 145-154.10.2478/bpasts-2013-0013 Search in Google Scholar

[12] Technical manual (MEDAPLAST- SP 40 (GRANITEX)), available at: https://fr.scribd.com/document/427211373/Medaplast-Sp-40# Search in Google Scholar

[13] EN (2003) European Standard 12309-3.Tests for hardened concrete - part 3: Resistance to compression of test pieces. CEN. 02. Search in Google Scholar

[14] NF (2005) EN standar. NF 12504-4. Sonic auscultation test. AFNOR. Search in Google Scholar

[15] CONTROLS (2002) Instruction Manual: Ultrasonic Pulse Velocity tester. Mod. 58-E0048. Search in Google Scholar

[16] https://www.holcim.be/fr/les-betons-speciaux-beton-a-hautes-performances Search in Google Scholar

[17] Eurocode 2 (2001) (ENV 1992-1-2): Design of concrete structures, Part 1-2: General rules - calculation of fire behavior. February. Search in Google Scholar

[18] BAEL 91 rules (DTU P 18-702) (revised February 99, 2000) Technical rules for the design and calculation of reinforced concrete structures and structures using the limit states method Fascicle 62, title 1 of the CCTG - Works section 1: reinforced concrete 1. Search in Google Scholar

[19] Chouiter, Y (2016) Study of the behavior of a high performance concrete (HPC) with glass fibers subjected to high temperature. Master memory. Algeria. Materials. M’sila: Mohamed Boudiaf University. Search in Google Scholar

[20] Sideris, KK; Manita, P; Chaniotakis, E (2009) Performance of thermally damaged fiber reinforced concretes. Construction and Building Materials 23 (3), 1232-1239.10.1016/j.conbuildmat.2008.08.009 Search in Google Scholar

[21] Pimienta, P; Mindeguia, JC; Simon, A; Behloul, M; Felicetti, R; Bamonte, R; Gambarova, PG (2012) Performance of concrete subjected to high temperature, from material to structure. Symposium Cergy-Pontoise University. France. 23 October. Search in Google Scholar

[22] Khaliq. W; Kodur.V (2011) Thermal and Mechanical Properties of Fiber Reinforced HighPerformance Self-Consolidating Concrete at Elevated Temperatures. Cement and Concrete Research. 41 (11), 1112-1122.10.1016/j.cemconres.2011.06.012 Search in Google Scholar

[23] Behnood, A; Ghandehari, M (2009) Comparison of compressive and splitting tensile strength of high-strength concrete with and without polypropylene fibers heated to high temperature. Fire Safety Journal. 44 (8), 1015-1022.10.1016/j.firesaf.2009.07.001 Search in Google Scholar

[24] Pliya, P (2010) Contribution of polypropylene and metallic fibers to improving the behavior of concrete subjected to high temperature. PhD thesis. France. University of Cergy Pontoise. Search in Google Scholar

Recommended articles from Trend MD