Cite

[1] Bleich, F. (1950). The mathematical theory of vibration in suspension bridges. Washington: United States Government Printing Office.Search in Google Scholar

[2] Selberg, A. (1961). Oscillation and aerodynamic stability of suspension bridges. Acta P. 308, Ci. 3.Search in Google Scholar

[3] Theodorsen, T. (1935). General theory of aerodynamic instability and the mechanism of flutter. 496, U.S. Advisory Committee for Aeronautics, Langley, VA, U.S.A.Search in Google Scholar

[4] Klöppel, K. and Weber, G. (1963). Teilmodellversuche zur Beurteilung des aerodynamischen Verhaltens von Brücken. Der Stahlbau 4, 113-121.Search in Google Scholar

[5] Frandsen, A.G. (1966). Wind stability of suspension bridges. Paper 43 of International Symposium on Suspension Bridges, Proceedings. Laboratório Nacional de Engenharia Civil, Lisboa.Search in Google Scholar

[6] Tesar, A. (1978). Aeroelastic Response of Transporter Shell Bridges in Smooth Air Flow. Trondheim: The Norwegian Institute of Technology, Tapir Publisher.Search in Google Scholar

[7] Tesar, A. (1988). Transfer Matrix Method. Dordrecht, Boston, London: KLUWER Academic Publishers.Search in Google Scholar

[8] Tesar, A. and Svolik, J. (1993). Wave distribution in fibre members subjected to kinematic forcing. Int. Journal for Communication in Numerical Mechanics, 9, 156-164.10.1002/cnm.1640090303Search in Google Scholar

[9] Juhásová, E., Motlík I., and Vrabec, M. (1998). Some experiences with calibration and modeling in wind tunnel of ICA SAS. Building Research Journal, 46, 47-69.Search in Google Scholar

[10] STN EN 1991-1-4 Eurocode 1. Structural loads. Part 1.4. General loads. Wind loads.Search in Google Scholar

[11] Tesar, A. and Tvrda, K. (2006). Energy approach for analysis of nonlinear time response. Building Research Journal, Vol. 54, Nr. 2, 101-122.Search in Google Scholar

[12] Tesar, A. and Tvrda, K. (2007). Energy approach for solution of nonlinear natural vibration.Building Research Journal, Vol. 55, Nr. 1-2, 71-84.Search in Google Scholar

[13] Hautoy, C. (1990). Simulation des proprietes dynamiques du vent. Souflerie a couche limite du C.S.T.B., Nantes, France.Search in Google Scholar

[14] Moonen, P., Blocken, B. and Carmeliet, J. (2007). Indicators for the evaluation of wind tunnel test section flow quality and application to a numerical closed circuit wind tunnel. J.W.E.I.A., (95), 1289-1314.10.1016/j.jweia.2007.02.027Search in Google Scholar

[15] Teleman, E.C., Silion, R., Axinte, E. and Pescaru, R. (2008). Turbulence scales simulations in atmospheric boundary layer wind tunnels. Bulletinul Institutului Polytehnic din Iasi, Publicat de Universitatea Tehnica “Gheorghe Asachi” din Iasi, Tomul LIV (LVIII), Fasc. 2, 7-14Search in Google Scholar

[16] Tesar, A. (2011). Aeroelastic Assessment of Elements of Photovoltaic Power Plants. Technical Report for RAAB VILLANZSZERELŐ KFT., CSÖRGŐFA SOR 6, 9027 GYŐR, Institute for Construction and Architecture, Slovak Academy of Sciences, Bratislava. Search in Google Scholar

eISSN:
1338-7278
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other