1. bookVolume 54 (2018): Issue 1 (June 2018)
Journal Details
License
Format
Journal
eISSN
2199-6059
ISSN
0860-150X
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Negation and infinity

Published Online: 16 Nov 2018
Volume & Issue: Volume 54 (2018) - Issue 1 (June 2018)
Page range: 131 - 148
Journal Details
License
Format
Journal
eISSN
2199-6059
ISSN
0860-150X
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Infinity and negation are in various relations and interdependencies one to another. The analysis of negation and infinity aims to better understanding them. Semantical, syntactical, and pragmatic issues will be considered.

Keywords

Aristotle. (1961). Physics. Lincoln: University of Nebraska Press. (Richard Hope, trans.)Search in Google Scholar

Béziau, J.-Y. (2002). Are paraconsistent negations negations? In W. A. Carnielli, M. E. Coniglio, & I. M. Loffredo D’Ottaviano (Eds.), Paraconsistency: the logical way to the inconsistent (pp. 465-486). New-York: Marcel Dekker. Retrieved from www.jyb-logic.org/papers12-11/paraconsistent%20negations.pdfSearch in Google Scholar

Cantor, G. (1932). Gesammelte Abhandlungen mathematischen und philosophischen Inhalts. Mit Erl¨auterunden Anmerkungen sowie mit Erg¨anzungen aus den Briewechsel Cantor-Dedekind. Nebst einem Lebenslauf Cantors von A. Fraenkel (E. Zermelo, Ed.). Berlin, G¨ottingen: Verlag von Julius Springer. Retrieved from http://gdz.sub.uni-goettingen.de/dms/load/pdf/?PPN=PPN237853094&DMDID=DMDLOG0059&LOGID=LOG0059&PHYSID=PHYS0391 (Reprinted: Hildesheim 1962; 2nd ed. Springer, Berlin 1980 Mit erl¨auternden Anmerkungen sowie mit Erg¨anzungen aus dem Briefwechsel Cantor-Dedekind; reprint 2013. Available online)Search in Google Scholar

Carnielli,W., & Coniglio, M. E. (2016). Paraconsistent logic: Consistency, contradiction and negation (Vol. 40). Springer International Publishing.10.1007/978-3-319-33205-5Search in Google Scholar

Davis, M. (Ed.). (1965). The undecidable: Basic papers on undecidable propositions, unsolvable problems, and computable functions (1965, 2004 ed.). Hewlett, N.Y.: Raven Press. (An anthology of fundamental papers on undecidability and unsolvability, this classic reference opens with G¨odel’s landmark 1931 paper demonstrating that systems of logic cannot admit proofs of all true assertions of arithmetic. Subsequent papers by G¨odel, Church, Turing, and Post single out the class of recursive functions as computable by finite algorithms. 1965 edition.)Search in Google Scholar

Gentzen, G. (1936). Die Widerspruchsfreicheit der reinen Zahlentheorie. Mathematische Annalen, 112, 493-565. (Translated as The consistency of arithmetic, in (?, ?).)Search in Google Scholar

Gentzen, G. (1938). Neue Fassung des Widerspruchsfreicheitsbeweises f¨ur die reine Zahlentheorie. Forschungen zur Logik und Grundlegung der exakten Wissenschaften, 4, 19-44. (Translated as New version of the consistency proof for elementary number theory, in (?, ?).)Search in Google Scholar

Gentzen, G. (1969). The collected papers of Gerhard Gentzen (M. E. Szabo, Ed.). Amsterdam: North-Holland.Search in Google Scholar

Gerardy, T. (1969). Nachtr¨age zum Briefwechsel zwischen Carl Friedrich Gauss und Heinrich Christian Schumacher. G¨ottingen: Vandenhoeck u. Ruprecht.Search in Google Scholar

Gödel, K. (1931). ¨Uber formal unentscheidbare S¨atze der Principia Mathematica und verwandter Systeme I. Monatshefte f¨ur Mathematik und Physik, 38, 173-198. (Received: 17.XI.1930. Translated in: (?, ?, 144-195). Includes the German text and parallel English translation. English translations in (?, ?, 5-38), (?, ?, 595-616). Online version (translation by B. Meltzer, 1962): http://www.ddc.net/ygg/etext/godel/, PDF version (translation by M. Hirzel): http://nago.cs.colorado.edu/∼hirzel/papers/canon00-goedel.pdf)Search in Google Scholar

Gödel, K. (1934). On undecidable propositions of formal mathematical systems. ((mimeographed lecture notes, taken by S. C. Kleene and J. B. Rosser at the Institute for Advanced Study), Princeton; Reprinted in: (?, ?, 39-74))Search in Google Scholar

Gödel, K. (1986a). Collected works (Vols. 1 Publications 1929-1936; S. Feferman, J. Dawson, & S. Kleene, Eds.). New York: Oxford University Press.Search in Google Scholar

Gödel, K. (1986b). Collected works. Publications 1929-1936 (Vol. 1; S. Feferman, J. W. Dawson Jr., S. C. Kleene, G. H. Moore, R. M. Solovay, & J. van Heijenoort, Eds.). Oxford University Press Inc, USA.Search in Google Scholar

Granger, G. G. (1998). L’irrationnel. Paris: Odile Jacob.Search in Google Scholar

Heyting, A. (1930). Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der preusischen Akademie der Wissenschaften, phys.-math. Klasse, 42-56.Search in Google Scholar

Heyting, A. (1956). Intuitionism. an introduction (1st ed.). Amsterdam: North- Holland Publishing Co. (2nd edition 1966)Search in Google Scholar

Hilbert, D. (1928a). Die Grundlagen der Mathematik. Abhandlungen aus dem Seminar der Hamburgischen Universit¨at, 6, 65-85. (followed by Diskussionsbemerkungen zu dem zweiten Hilbertschen Vortrag by H. Weyl, pp. 86-88, and Zusatz zu Hilberts Vortrag by P. Bernays, pp. 89-95; shortened version in (?, ?), 7th ed., pp. 289-312; English translation (by S. Bauer-Mengelberg and D. Follesdal) in (?, ?), pp. 464-479. On-line publication www.marxists.org/reference/subject/philosophy/works/ge/hilbert.htm)10.1007/BF02940603Search in Google Scholar

Hilbert, D. (1928b). ¨Uber das Unendliche. Mathematische Annalen, 95, 161-190. Retrieved from http://eudml.org/doc/159124 (Lecture given in M¨unster, 4 June 1925)10.1007/BF01206605Search in Google Scholar

Hilbert, D. (1998). The theory of algebraic number fields. Berlin: Springer Verlag.10.1007/978-3-662-03545-0Search in Google Scholar

Jaśkowski, S. (1936). Recherches sur le syst´eme de la logique intuitioniste. In Actes du Congr´es International de Philosophie Scientifique (Vol. 6, pp. 58-61). Paris.Search in Google Scholar

Jaśkowski, S. (1948). Rachunek zdań dla systemow dedukcyjnych sprzecznych. Studia Societatis Scientiarun Torunesis, 1(5), 55-77. (An English translation: (?, ?))Search in Google Scholar

Jaśkowski, S. (1949). O koniunkcji dyskusyjnej w rachunku zdań dla systemow dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis (Sectio A), 1(8), 171-172. (An English translation appeared as (?, ?))Search in Google Scholar

Jaśkowski, S. (1969). A propositional calculus for inconsistent deductive systems. Studia Logica, 24, 143-157. (An English translation of (Jaśkowski, 1948) (reprinted in (?, ?)))10.1007/BF02134311Search in Google Scholar

Jaśkowski, S. (1999). On the discussive conjunction in the propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy, 7, 57-59. (An English translation of (Jaśkowski, 1949))10.12775/LLP.1999.004Search in Google Scholar

Japaridze, G. (2009). In the beginning was game semantics? In O.Majer, A. Pietarinen, & T. Tulenheimo (Eds.), Games: Unifying logic, language, and philosophy (Vol. 15, pp. 249-350). Springer Netherlands. Retrieved from https://www.researchgate.net/.../259202450 In the Beginning was Game Semantics10.1007/978-1-4020-9374-6_11Search in Google Scholar

Malec, A. (2001). Legal reasoning and logic. Studies in Logic, Grammar and Rethoric, 4(17), 97-101.Search in Google Scholar

Mathias, A. R. D. (1992). The ignorance of Bourbaki. The Mathematical Intelligencer, 14(3), 4-13. Retrieved from https://www.reddit.com/r/math/comments/24f8mp/the_ignorance_of_bourbaki_pdf/10.1007/BF03025863Search in Google Scholar

Nicholas of Cusa. (1985). On learned ignorance (de docta ignorantia) (2nd ed., Vol. 1; P. Wilpert, Ed.). Minneapolis, Minnesota: The Arthur J. Banning Press. Retrieved from www1.umn.edu/ships/galileo/library/cusa2.pdf (The translation of Book I was made from De docta ignorantia. Die belehrte Unwissenheit, Book I (Hamburg: Felix Meiner, 1970, 2nd edition), text edited by Paul Wilpert, revised by Hans G. Senger.)Search in Google Scholar

Núũez, R. E. (2017). Conceptual metaphor and the cognitive foundations of mathematics: Actual infinity and human imagination. Retrieved from www.cogsci.ucsd.edu/∼nunez/web/SingaporeF.pdfSearch in Google Scholar

Odintsev, S. (2008). Constructive negations and paraconsistency (Vol. 26). Springer Netherlands.10.1007/978-1-4020-6867-6Search in Google Scholar

Peters, C. A. F. (Ed.). (1860-1865). Briefwechsel zwischen C. F. Gaus und H. C. Schumacher. Altona-Esch. (Nachdruck Hildesheim: Olms 1975 in drei B¨anden I, II, III, wovon jeder Band des Nachdrucks 2 Bde. der Peters-Altona- Esch-Ausgabe enthält. Bd. 1 (1860): Briefe 1808-1825. Bd. 2: 1824/25- 02/1836. Bd. 3 (1861): 03/1836-12/1840. Bd. 4 (1862): 01/1841-04/1845. Bd. 5 (1863): 05/1845-09/1848. Bd. 6 (1865): 12/1848-11/1850. Trotz den Volumens ist der Briefwechsel nicht vollst¨andig: (?, ?). Zum Inhalt der Briefe: http://www.math.uni-hamburg.de/math/ign/gauss/register.htm)Search in Google Scholar

Presburger, M. (1929). ¨Uber die Vollst¨andigkeit eines gewissen Systems der Arithmetik ganze Zahlem, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I Congr´es de Math´ematiciens des Pays Slaves (pp. 92-101). Warsaw.Search in Google Scholar

Rucker, R. (2013). Infinity and the mind: The science and philosophy of the infinite. Princeton University Press. Retrieved from http://www.rudyrucker.com/infinityandthemind/#calibre link-35410.1515/9781400849048Search in Google Scholar

Russell, R. J. (2011). God and infinity: Theological insights from Cantor’s mathematics. In M. Heller & W. H.Woodin (Eds.), Infinity. New research frontiers (pp. 275-289). Cambridge: Cambridge University Press.Search in Google Scholar

Szabό, A. (1978). The beginnings of greek mathematics. Dordrecht: D. Reidel.10.1007/978-94-017-3243-7Search in Google Scholar

Thomas Aquinas. (1920). Summa theologica. Online Edition Copyright c 2008 by Kevin Knight. Retrieved from http://www.newadvent.org/summa/index.html (Second and Revised Edition. Literally translated by Fathers of the English Dominican Province)Search in Google Scholar

Thomas Aquinas. (1947). Summa theologica. Benziger Bros. Retrieved from http://dhspriory.org/thomas/summa/FP.html (Translated by Fathers of the English Dominican Province)Search in Google Scholar

van Heijenoort, J. (Ed.). (1967). From Frege to G¨odel. A source book in mathematical logic 1879-1931 (1st ed.). Cambridge Mass.: Harvard University Press. (2nd ed., 1971, 3rd ed. 1976)Search in Google Scholar

Weber, H. (1893). Leopold Kronecker. Jahresbericht der Deutschen Mathematiker- Vereinigung, 2, 5-31. Retrieved from http://www.digizeitschriften.de/dms/resolveppn/?PPN=PPN37721857X0002.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo