Cite

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68(6),394–424.10.3322/caac.21492 Search in Google Scholar

2. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RGS, Barzi A et al. Colorectal cancer statistics, 2017. CA Cancer J. Clin. 2017;67(3),177–193.10.3322/caac.21395 Search in Google Scholar

3. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53(2):148-158.10.2478/raon-2019-0018657249530956230 Search in Google Scholar

4. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-378.10.1016/j.ejphar.2014.07.025414668425058905 Search in Google Scholar

5. Markman M. Toxicities of the platinum antineoplastic agents. Expert Opin Drug Saf. 2003;2(6):597-607.10.1517/14740338.2.6.59714585068 Search in Google Scholar

6. Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chem Sci. 2014;5,2925–2932.10.1039/C3SC53243G Search in Google Scholar

7. Wang J, Zhao Z, Zhou S, Zhang X, Bo H. The antitumor effect and toxicity of a ruthenium(II) complex in vivo. Inorg Chem Commun.2018;87:49-52.10.1016/j.inoche.2017.12.003 Search in Google Scholar

8. Kanaoujiya R, Singh M, Singh J and Srivastava S. Ruthenium based anticancer compounds and their importance. J Sci Res. 2020;64(1):264-268.10.37398/JSR.2020.640150 Search in Google Scholar

9. Carnizello AP, Alves JM, Pereira DE, Campos JCL, Barbosa MIF, Batista AA, Tavares DC. Study of the cytotoxic and genotoxic potential of the carbonyl ruthenium (II) compound, ct-[RuCl(CO)(dppb)(bipy)]PF6 [dppb = 1,4-bis(diphenylphosphino)butane and bipy = 2,2’-bipyridine], by in vitro and in vivo assays. J Appl Toxicol. 2019;39(4):630-638.10.1002/jat.375330460706 Search in Google Scholar

10. Deavall DG, Martin EA, Horner JM, Roberts R. Druginduced oxidative stress and toxicity. J Toxicol. 2012;2012:645460.10.1155/2012/645460342013822919381 Search in Google Scholar

11. McWhirter D, Kitteringham N, Jones RP, Malik H, Park K, Palmer D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: a review of mechanisms and outcomes. Crit Rev Oncol Hematol. 2013;88(2): 404-415.10.1016/j.critrevonc.2013.05.01123786843 Search in Google Scholar

12. Conklin KA. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004;3(4):294-230.10.1177/153473540427033515523100 Search in Google Scholar

13. Savic M, Arsenijevic A, Milovanovic J, Stojanovic B, Stankovic V, Rilak Simovic A, Lazic D, Arsenijevic N, Milovanovic M. Antitumor Activity of Ruthenium(II) Terpyridine Complexes towards Colon Cancer Cells In Vitro and In Vivo. Molecules. 2020;25(20):4699.10.3390/molecules25204699758736933066568 Search in Google Scholar

14. Rilak A, Bratsos I, Zangrando E, Kljun J, Turel I, Bugarčić ŽD, Alessio E. New water-soluble ruthenium (II) terpyridine complexes for anticancer activity: synthesis, characterization, activation kinetics, and interaction with guanine derivatives. Inorg Chem. 2014;53 (12):6113-6126.10.1021/ic5005215 Search in Google Scholar

15. Gou HF, Huang J, Shi HS, Chen XC, Wang YS. Chemoimmunotherapy with oxaliplatin and interleukin-7 inhibits colon cancer metastasis in mice. PLoS One 2014;21;9(1).10.1371/journal.pone.0085789 Search in Google Scholar

16. Tan S, Peng X, Peng W, Zhao Y, Wei Y. Enhancement of oxaliplatin-induced cell apoptosis and tumor suppression by 3-methyladenine in colon cancer. Oncol Lett. 2015;9(5):2056-2062.10.3892/ol.2015.2996 Search in Google Scholar

17. Terracina KP, Aoyagi T, Huang WC, Nagahashi M, Yamada A, Aoki K, Takabe K. Development of a metastatic murine colon cancer model. J Surg Res. 2015;199(1):106-114.10.1016/j.jss.2015.04.030 Search in Google Scholar

18. Stojic IM, Zivkovic VI, Srejovic IM, et al. Cisplatin and cisplatin analogues perfusion through isolated rat heart: the effects of acute application on oxidative stress biomarkers. Mol Cell Biochem. 2018;439(1-2):19-33.10.1007/s11010-017-3132-8 Search in Google Scholar

19. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358.10.1016/0003-2697(79)90738-3 Search in Google Scholar

20. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61:882–8. Search in Google Scholar

21. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105(25),121–126.10.1016/S0076-6879(84)05016-3 Search in Google Scholar

22. Beutler E. Superoxide dismutase. In: Beutler E (ed) Red cell metabolism a manual of biochemical methods. Grune & Stratton, Philadelphia, 1984;83–85. Search in Google Scholar

23. Golbaghi G and Castonguay A. Rationally Designed Ruthenium Complexes for Breast Cancer Therapy. Molecules. 2020;25(2)265.10.3390/molecules25020265702430131936496 Search in Google Scholar

24. Alves de Souza CE, Alves de Souza HM, Stipp MC, et al. Ruthenium complex exerts antineoplastic effects that are mediated by oxidative stress without inducing toxicity in Walker-256 tumor-bearing rats. Free Radic Biol Med. 2017;110:228-239.10.1016/j.freeradbiomed.2017.06.01128629835 Search in Google Scholar

25. Zeng L, Gupta P, Chen Y, et al. The development of anticancer ruthenium(ii) complexes: from single molecule compounds to nanomaterials. Chem Soc Rev. 2017;46(19):5771-5804.10.1039/C7CS00195A562484028654103 Search in Google Scholar

26. Morris-Stiff G, Tan YM, Vauthey JN. Hepatic complications following preoperative chemotherapy with oxaliplatin or irinotecan for hepatic colorectal metastases. Eur J Surg Oncol. 2008;34(6):609-614.10.1016/j.ejso.2007.07.00717764887 Search in Google Scholar

27. Bano N, Ikram R. Histopathological and biochemical assessment of kidney damage in albino wistar rats treated with cytotoxic platinum compounds in combination with 5-FU. Pak J Pharm Sci. 2017;30(5):1595-601. Search in Google Scholar

28. Elsayed SA, Harrypersad S, Sahyon HA, El-Magd MA, Walsby CJ. Ruthenium(II)/(III) DMSO-Based Complexes of 2-Aminophenyl Benzimidazole with In Vitro and In Vivo Anticancer Activity. Molecules. 2020;25(18):4284.10.3390/molecules25184284757085232962014 Search in Google Scholar

29. Castro JP, Grune T, Speckmann B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol. Chem. 2016;397:709–724.10.1515/hsz-2015-0305 Search in Google Scholar

30. Weinberg F, Ramnath N, Nagrath D. Reactive Oxygen Species in the Tumor Microenvironment: An Overview. Cancers (Basel). 2019;11(8):1191.10.3390/cancers11081191672157731426364 Search in Google Scholar

31. Harris AL. Hypoxia? A key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.10.1038/nrc70411902584 Search in Google Scholar

32. Forster JC, Harriss-Phillips WM, Douglass MJ, Bezak E. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia (Auckl). 2017;5:21-32.10.2147/HP.S133231539527828443291 Search in Google Scholar

33. Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PR, Lima AP, Oliveira R, Ferraz IBM, Grisolia CK, Almeida MAP, Batista AA, Silveira-Lacerda EP. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomed Pharmacother. 2018;107:1082-1092.10.1016/j.biopha.2018.08.05130257320 Search in Google Scholar

34. Kostova I. Ruthenium complexes as anticancer agents. Curr Med Chem. 2006;13(9):1085-1107.10.2174/09298670677636094116611086 Search in Google Scholar

35. Teixeira TM, Arraes IG, Abreu DC, Oliveira KM, Correa RS, Batista AA, Braunbeck T, de Paula Silveira Lacerda E. Ruthenium complexes show promise when submitted to toxicological safety tests using alternative methodologies. Eur J Med Chem. 2021;216:113262.10.1016/j.ejmech.2021.11326233711764 Search in Google Scholar

36. Montjean D, Me´ne´zo Y, Benkhalifa M, Cohen M, Belloc S, Cohen-Bacrie P, and De Mouzon J. Malonaldehyde formation and DNA fragmentation: two independent sperm decays linked to reactive oxygen species. Zygote. 2010;18:265-268.10.1017/S096719940999031120331908 Search in Google Scholar

37. Ciftci O, Ozdemir I, Cakir O, Demir S. The determination of oxidative damage in heart tissue of rats caused by ruthenium(II) and gold(I) N-heterocyclic carbene complexes. Toxicology and Industrial Health. 2011;27(8):735-741.10.1177/074823371039599321427133 Search in Google Scholar

38. Mihajlovic K, Milosavljevic I, Jeremic J, Savic M, Sretenovic J, Srejovic I, Zivkovic V, Jovicic N, Paunovic M, Bolevich S, Jakovljevic V, Novokmet S. Redox and apoptotic potential of novel ruthenium complexes in rat blood and heart. Can J Physiol Pharmacol. 2021;99(2):207-217.10.1139/cjpp-2020-034932976727 Search in Google Scholar

39. Eöry ML, Zanuzzi CN, Fuentealba NA, Sguazza GH, Gimeno EJ, Galosi CM, Barbeito CG. Effects of different anesthetics in the murine model of EHV-1 infection. Vet Pathol. 2013;50(5):849-856.10.1177/030098581347606223381927 Search in Google Scholar

40. Mohanraj M, Ayyannan G, Raja G, Jayabalakrishnan C. Synthesis, spectral characterization, DNA interaction, radical scavenging and cytotoxicity studies of ruthenium (II) hydrazone complexes. J Photochem Photobiol B. 2016;158,164–173.10.1016/j.jphotobiol.2016.03.005 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other