Cite

1. Volarevic V, Ljujic B, Stojkovic P, Lukic A, Arsenijevic N, Stojkovic M. Human stem cell research and regenerative medicine--present and future. Br Med Bull. 2011;99:155-68.10.1093/bmb/ldr02721669982 Search in Google Scholar

2. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-7.10.1080/1465324060085590516923606 Search in Google Scholar

3. Volarevic V, Nurkovic J, Arsenijevic N, Stojkovic M. Concise review: Therapeutic potential of mesenchymal stem cells for the treatment of acute liver failure and cirrhosis. Stem Cells. 2014;32(11):2818-23.10.1002/stem.181825154380 Search in Google Scholar

4. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML. Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity. 2010;43(4):255-63.10.3109/0891693090330564119845478 Search in Google Scholar

5. Djouad F, Charbonnier LM, Bouffi C, Louis-Plence P, et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism. Stem Cells. 2007;25(8):2025-32.10.1634/stemcells.2006-054817510220 Search in Google Scholar

6. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105(4):1815-22.10.1182/blood-2004-04-155915494428 Search in Google Scholar

7. Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood. 2005;105(5):2214-9.10.1182/blood-2004-07-292115514012 Search in Google Scholar

8. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739-49.10.1634/stemcells.2007-019717656645 Search in Google Scholar

9. Gazdic M, Volarevic V, Arsenijevic N, Stojkovic M. Mesenchymal stem cells: a friend or foe in immune-mediated diseases. Stem Cell Rev Rep. 2015;11(2):280-7.10.1007/s12015-014-9583-325592610 Search in Google Scholar

10. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One. 2010;5(4):e10088.10.1371/journal.pone.0010088285993020436665 Search in Google Scholar

11. Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14(8):493-507.10.1038/s41581-018-0023-529895977 Search in Google Scholar

12. Romieu-Mourez R, François M, Boivin MN, Bouchentouf M, Spaner DE, Galipeau J. Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype. J Immunol. 2009;182(12):7963-73.10.4049/jimmunol.080386419494321 Search in Google Scholar

13. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014;21(2):216-25.10.1038/cdd.2013.158389095524185619 Search in Google Scholar

14. Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic Use of Mesenchymal Stem Cell-Derived Exosomes: From Basic Science to Clinics. Pharmaceutics. 2020;12(5):474.10.3390/pharmaceutics12050474731371332456070 Search in Google Scholar

15. Harrell CR, Miloradovic D, Sadikot R, et al. Molecular and Cellular Mechanisms Responsible for Beneficial Effects of Mesenchymal Stem Cell-Derived Product “Exod- MAPPS” in Attenuation of Chronic Airway Inflammation. Anal Cell Pathol (Amst). 2020;2020:3153891. Search in Google Scholar

16. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255-89.10.1146/annurev-cellbio-101512-12232625288114 Search in Google Scholar

17. Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida- Porada G, Gonçalves RM. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning. Front Immunol. 2018;9:2837.10.3389/fimmu.2018.02837628829230564236 Search in Google Scholar

18. Kaur S, Abu-Shahba AG, Paananen RO, et al. Small non-coding RNA landscape of extracellular vesicles from human stem cells. Sci Rep. 2018;8(1):15503.10.1038/s41598-018-33899-6619556530341351 Search in Google Scholar

19. Whiteside TL. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018;35:69-79.10.1016/j.smim.2017.12.003586620629289420 Search in Google Scholar

20. Androulidaki A, Iliopoulos D, Arranz A, et al. The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs. Immunity. 2009;31(2):220-231.10.1016/j.immuni.2009.06.024286558319699171 Search in Google Scholar

21. Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A, Ghosh B. Let-7 microRNA- mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011;128(5):1077-85.e1-10.10.1016/j.jaci.2011.04.03421616524 Search in Google Scholar

22. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 2011;30(10):1977-89.10.1038/emboj.2011.94309849521468030 Search in Google Scholar

23. Yang, L., Boldin, M. P., Yu, Y., Liu, C. S., Ea, C. K., Ramakrishnan, P., et al.. miR-146a controls the resolution of T cell responses in mice. Journal of Experimental Medicine. 2012; 209(9), 1655–1670. Search in Google Scholar

24. Hart, M., Walch-Rückheim, B., Friedmann, K, S., Rheinheimer, S., Tänzer, T., Glombitza, B., … Meese, E. miR-34a: A new player in the regulation of T cell function by modulation of NF-κB signaling. Cell Death and Disease. 2019;10(2):4610.1038/s41419-018-1295-1636200730718475 Search in Google Scholar

25. Hillman, Y., Mazkereth, N., Farberov, L., Shomron, N., & Fishelson, Z. Regulation of complement-dependent cytotoxicity by MicroRNAs miR-200b, miR-200c, and miR-217. The Journal of Immunology. 2016;196(12), 5156–5165. Search in Google Scholar

26. Kehl D, Generali M, Mallone A, Heller M, Uldry AC, Cheng P, Gantenbein B, Hoerstrup SP, Weber B. Proteomic analysis of human mesenchymal stromal cell secretomes: a systematic comparison of the angiogenic potential. NPJ Regen Med. 2019;4:8.10.1038/s41536-019-0070-y646790431016031 Search in Google Scholar

27. Kong P, Xie X, Li F, Liu Y, Lu Y. Placenta mesenchymal stem cell accelerates wound healing by enhancing angiogenesis in diabetic Goto-Kakizaki (GK) rats. Biochem Biophys Res Commun. 2013;438(2):410-9.10.1016/j.bbrc.2013.07.08823899518 Search in Google Scholar

28. Bai L, Li D, Li J, et al. Bioactive molecules derived from umbilical cord mesenchymal stem cells. Acta Histochem. 2016;118(8):761-769.10.1016/j.acthis.2016.09.00627692875 Search in Google Scholar

29. Tao H, Han Z, Han ZC, Li Z. Proangiogenic Features of Mesenchymal Stem Cells and Their Therapeutic Applications. Stem Cells Int. 2016; 1314709.10.1155/2016/1314709473681626880933 Search in Google Scholar

30. Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation. 2016;23(2):95-121.10.1111/micc.12259474413426614117 Search in Google Scholar

31. Motegi SI, Ishikawa O. Mesenchymal stem cells: The roles and functions in cutaneous wound healing and tumor growth. J Dermatol Sci. 2017;86(2):83-89.10.1016/j.jdermsci.2016.11.00527866791 Search in Google Scholar

32. Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells. 2019;8(5):467.10.3390/cells8050467656290631100966 Search in Google Scholar

33. Stenderup, K., Justesen, J., Clausen, C., and Kassem, M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003; 33, 919–926. Search in Google Scholar

34. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017-26. Search in Google Scholar

35. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-95.10.1091/mbc.e02-02-010513863312475952 Search in Google Scholar

36. Jin HJ, Bae YK, Kim M, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986-8001.10.3390/ijms140917986379476424005862 Search in Google Scholar

37. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006; 24(5):1294-301.10.1634/stemcells.2005-034216410387 Search in Google Scholar

38. Markovic BS, Kanjevac T, Harrell CR, et al. Molecular and Cellular Mechanisms Involved in Mesenchymal Stem Cell-Based Therapy of Inflammatory Bowel Diseases. Stem Cell Rev. 2018;14(2):153-16510.1007/s12015-017-9789-229177796 Search in Google Scholar

39. Harrell CR, Gazdic M, Fellabaum C, et al. Therapeutic Potential of Amniotic Fluid Derived Mesenchymal Stem Cells Based on their Differentiation Capacity and Immunomodulatory Properties. Curr Stem Cell Res Ther. 2019; 14: 327-336.10.2174/1574888X1466619022220174930806325 Search in Google Scholar

40. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739-2749.10.1634/stemcells.2007-019717656645 Search in Google Scholar

41. Xie XH, Wang XL, He YX, et al. Promotion of bone repair by implantation of cryopreserved bone marrow-derived mononuclear cells in a rabbit model of steroid-associated osteonecrosis. Arthritis Rheum. 2012;64(5):1562-1571.10.1002/art.3452522544527 Search in Google Scholar

42. Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem. 2001;82(4):583-590.10.1002/jcb.117411500936 Search in Google Scholar

43. Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone. 2003;33(6):919-92610.1016/j.bone.2003.07.00514678851 Search in Google Scholar

44. Lu LL, Liu YJ, Yang SG, et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica. 2006;91(8):1017-1026 Search in Google Scholar

45. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279-4295.10.1091/mbc.e02-02-010513863312475952 Search in Google Scholar

46. Desterke C, Griscelli F, Imeri J, et al. Molecular investigation of adequate sources of mesenchymal stem cells for cell therapy of COVID-19-associated organ failure. Stem Cells Transl Med. 2020; 25:10.1002/sctm.20-0189.10.1002/sctm.20-0189775375333237619 Search in Google Scholar

47. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-273.10.1038/s41586-020-2012-7 Search in Google Scholar

48. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.10.1016/S0140-6736(20)30183-5 Search in Google Scholar

49. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-1207.10.1056/NEJMoa2001316712148431995857 Search in Google Scholar

50. Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy. Biotechnol Rep (Amst). 2020;26:e00467.10.1016/j.btre.2020.e00467722467132420049 Search in Google Scholar

51. Wang J, Jiang M, Chen X, Montaner LJ. Cytokine storm and leukocyte changes in mild versus severe SARSCoV- 2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J Leukoc Biol. 2020;108(1):17-41.10.1002/JLB.3COVR0520-272R732325032534467 Search in Google Scholar

52. Gupta KK, Khan MA, Singh SK. Constitutive Inflammatory Cytokine Storm: A Major Threat to Human Health. J Interferon Cytokine Res. 2020;40(1):19-23.10.1089/jir.2019.008531755797 Search in Google Scholar

53. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250-256.10.1002/jmv.26232736134232592501 Search in Google Scholar

54. Hussman JP. Cellular and Molecular Pathways of COVID-19 and Potential Points of Therapeutic Intervention. Front Pharmacol. 2020;11:1169.10.3389/fphar.2020.01169740691632848776 Search in Google Scholar

55. Zhou Y, Fu B, Zheng X, et al. Aberrant pathogenic GMCSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. bioRxiv. 2020;10.1101/2020.02.12.945576 Search in Google Scholar

56. Eguchi S, Kawai T, Scalia R, Rizzo V. Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension. 2018;71(5):804-810.10.1161/HYPERTENSIONAHA.118.10266589715329581215 Search in Google Scholar

57. Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019;50(4):812-831.10.1016/j.immuni.2019.03.027 Search in Google Scholar

58. Wong CK, Lam CW, Wu AK, et al. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95-10310.1111/j.1365-2249.2004.02415.x Search in Google Scholar

59. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-2629.10.1172/JCI137244 Search in Google Scholar

60. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBio- Medicine. 2020;55:102763. Search in Google Scholar

61. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-422.10.1016/S2213-2600(20)30076-X Search in Google Scholar

62. Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1334-49.10.1056/NEJM200005043421806 Search in Google Scholar

63. Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the lombardy Region, Italy. JAMA 2020;323(16):1574.10.1001/jama.2020.5394 Search in Google Scholar

64. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395:1054–62.10.1016/S0140-6736(20)30566-3 Search in Google Scholar

65. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6):102537.10.1016/j.autrev.2020.102537719500232251717 Search in Google Scholar

66. Bradford E, Jacobson S, Varasteh J, et al. The value of blood cytokines and chemokines in assessing COPD. Respir Res 2017;18(1).10.1186/s12931-017-0662-2565582029065892 Search in Google Scholar

67. Potere N, Di Nisio M, Cibelli D, et al. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. Ann Rheum Dis. 2021;80(2):1-2.10.1136/annrheumdis-2020-21824332647027 Search in Google Scholar

68. Khoury M, Cuenca J, Cruz FF, et al. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. 2020;55(6):2000858.10.1183/13993003.00858-2020 Search in Google Scholar

69. Bailey CC, Zhong G, Huang IC, Farzan M. IFITMFamily Proteins: The Cell’s First Line of Antiviral Defense. Annu Rev Virol. 2014;1:261-283.10.1146/annurev-virology-031413-085537 Search in Google Scholar

70. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019;6(1):567-584.10.1146/annurev-virology-092818-015756 Search in Google Scholar

71. Kane M, Zang TM, Rihn SJ, et al. Identification of Interferon- Stimulated Genes with Antiretroviral Activity. Cell Host Microbe. 2016;20(3):392-405.10.1016/j.chom.2016.08.005 Search in Google Scholar

72. Sveiven SN, Nordgren TM. Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. Am J Physiol Lung Cell Mol Physiol. 2020;319(2):L197-L210.10.1152/ajplung.00049.2020 Search in Google Scholar

73. Rolandsson Enes S, Åhrman E, Palani A, Hallgren O, Bjermer L, Malmström A, Scheding S, Malmström J, Westergren-Thorsson G. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry. Sci Rep. 2017;7(1):9316.10.1038/s41598-017-09127-y Search in Google Scholar

74. Sinclair, K., Yerkovich, S. T., & Chambers, D. C.. Mesenchymal stem cells and the lung. Respirology. 2013; 18(3):397–411.10.1111/resp.12050 Search in Google Scholar

75. Foronjy RF, Majka SM. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells. 2012;1(4):874.10.3390/cells1040874 Search in Google Scholar

76. Luo XY, Meng XJ, Cao DC, et al. Transplantation of bone marrow mesenchymal stromal cells attenuates liver fibrosis in mice by regulating macrophage subtypes. Stem Cell Res Ther. 2019;10(1):16.10.1186/s13287-018-1122-8 Search in Google Scholar

77. Wang J, Wang BJ, Yang JC, et al. [Research advances in the mechanism of pulmonary fibrosis induced by coronavirus disease 2019 and the corresponding therapeutic measures]. Zhonghua Shao Shang Za Zhi. 2020;36(8):691-697. Search in Google Scholar

78. Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med. 2014;2(12):1016-26.10.1016/S2213-2600(14)70217-6 Search in Google Scholar

79. Atluri S, Manchikanti L, Hirsch JA. Expanded Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) as a Therapeutic Strategy in Managing Critically Ill COVID-19 Patients: The Case for Compassionate Use. Pain Physician. 2020;23(2):E71-E83.10.36076/ppj.2020/23/E71 Search in Google Scholar

80. Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11(2):216-228.10.14336/AD.2020.0228 Search in Google Scholar

81. McIntyre LA, Moher D, Fergusson DA, et al. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A Systematic Review. PLoS One. 2016;11(1):e0147170.10.1371/journal.pone.0147170 Search in Google Scholar

82. Behnke J, Kremer S, Shahzad T, et al. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med. 2020;9(3):682.10.3390/jcm9030682 Search in Google Scholar

83. Majolo F, da Silva GL, Vieira L, Timmers LFSM, Laufer S, Goettert MI. Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Rev Rep. 2021;17(1):44-55.10.1007/s12015-020-10033-6 Search in Google Scholar

84. Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24-32.10.1016/S2213-2600(14)70291-7 Search in Google Scholar

85. Matthay MA, Calfee CS, Zhuo H, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019;7(2):154-162.10.1016/S2213-2600(18)30418-1 Search in Google Scholar

86. Harrell CR, Sadikot R, Pascual J, et al. Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives. Stem Cells Int. 2019;2019:4236973.10.1155/2019/4236973652579431191672 Search in Google Scholar

87. Liu S, Peng D, Qiu H, Yang K, Fu Z, Zou L. Mesenchymal stem cells as a potential therapy for COVID-19. Stem Cell Res Ther. 2020;11(1):169.10.1186/s13287-020-01678-8719703132366290 Search in Google Scholar

88. Rajarshi K, Chatterjee A, Ray S. Combating COVID-19 with mesenchymal stem cell therapy. Biotechnol Rep (Amst). 2020;26:e00467.10.1016/j.btre.2020.e00467722467132420049 Search in Google Scholar

89. Zhang Y, Ding J, Ren S, et al. Intravenous infusion of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia. Stem Cell Res Ther. 2020;11(1):207.10.1186/s13287-020-01725-4725155832460839 Search in Google Scholar

90. Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020;16(3):427-433.10.1007/s12015-020-09973-w715251332281052 Search in Google Scholar

91. Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev. 2020;29(12):747-754.10.1089/scd.2020.0080731020632380908 Search in Google Scholar

92. Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem Cell Res Ther. 2021;12(1):9110.1186/s13287-021-02165-4784480433514427 Search in Google Scholar

93. Gorman E, Shankar-Hari M, Hopkins P, et al. Repair of Acute Respiratory Distress Syndrome by Stromal Cell Administration in COVID-19 (REALIST-COVID-19): A structured summary of a study protocol for a randomised, controlled trial. Trials. 2020;21(1):46210.1186/s13063-020-04416-w726775632493473 Search in Google Scholar

94. Xu X, Jiang W, Chen L, et al. Evaluation of the safety and efficacy of using human menstrual blood-derived mesenchymal stromal cells in treating severe and critically ill COVID-19 patients: An exploratory clinical trial. Clin Transl Med. 2021;11(2):e297.10.1002/ctm2.297783995933634996 Search in Google Scholar

95. Liang B, Chen J, Li T, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report. Medicine (Baltimore). 2020;99(31):e21429.10.1097/MD.0000000000021429740280032756149 Search in Google Scholar

96. Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis. 2020;11(2):216-228.10.14336/AD.2020.0228706946532257537 Search in Google Scholar

97. Chen Y, Zhang Q, Peng W, et al. Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and metaanalysis protocol. BMJ Open. 2020;10(12):e042085.10.1136/bmjopen-2020-042085775087133371042 Search in Google Scholar

98. Sánchez-Guijo F, García-Arranz M, López-Parra M, et al. Adipose-derived mesenchymal stromal cells for the treatment of patients with severe SARS-CoV-2 pneumonia requiring mechanical ventilation. A proof of concept study. EClinicalMedicine. 2020;25:100454.10.1016/j.eclinm.2020.100454734861032838232 Search in Google Scholar

99. Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021.10.1002/sctm.20-0472804604033400390 Search in Google Scholar

100. Qu W, Wang Z, Hare JM, et al. Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Transl Med. 2020;9(9):1007-1022.10.1002/sctm.20-0146730074332472653 Search in Google Scholar

101. Golchin A, Seyedjafari E, Ardeshirylajimi A. Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem Cell Rev Rep. 2020;16(3):427-433.10.1007/s12015-020-09973-w715251332281052 Search in Google Scholar

102. Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J. 2020;55(6):2000858.10.1183/13993003.00858-2020714427332265310 Search in Google Scholar

103. Yu F, Jia R, Tang Y, Liu J, Wei B. SARS-CoV-2 infection and stem cells: Interaction and intervention. Stem Cell Res. 2020;46:101859.10.1016/j.scr.2020.101859726322132570174 Search in Google Scholar

104. Zumla A, Wang FS, Ippolito G, et al. Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy - Achieving global consensus and visibility for cellular host-directed therapies. Int J Infect Dis. 2020;96:431-439.10.1016/j.ijid.2020.05.040723149732425638 Search in Google Scholar

105. Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019; 2019:9628536.10.1155/2019/9628536648104031093291 Search in Google Scholar

106. von Bahr L, Sundberg B, Lönnies L, et al. Long-term complications, immunologic effects, and role of passage for outcome in mesenchymal stromal cell therapy. Biol Blood Marrow Transplant. 2012;18(4):557-64.10.1016/j.bbmt.2011.07.02321820393 Search in Google Scholar

107. Price MJ, Chou CC, Frantzen M, et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol. 2006;111(2):231-9.10.1016/j.ijcard.2005.07.03616246440 Search in Google Scholar

108. Jeong JO, Han JW, Kim JM, et al. Malignant tumor formation after transplantation of short-term cultured bone marrow mesenchymal stem cells in experimental myocardial infarction and diabetic neuropathy. Circ Res. 2011;108(11):1340-7.10.1161/CIRCRESAHA.110.239848310974121493893 Search in Google Scholar

109. Breitbach M, Bostani T, Roell W, et al. Potential risks of bone marrow cell transplantation into infarcted hearts. Blood. 2007;110(4):1362-9.10.1182/blood-2006-12-06341217483296 Search in Google Scholar

110. Kan C, Chen L, Hu Y, et al. Microenvironmental factors that regulate mesenchymal stem cells: lessons learned from the study of heterotopic ossification. Histol Histopathol. 2017;32(10):977-985. Search in Google Scholar

111. Ljujic B, Milovanovic M, Volarevic V, et al. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice. Sci Rep. 2013;3:2298.10.1038/srep02298372551223892388 Search in Google Scholar

112. Miloradovic D, Miloradovic D, Markovic BS, et al. The Effects of Mesenchymal Stem Cells on Antimelanoma Immunity Depend on the Timing of Their Administration. Stem Cells Int. 2020;2020:8842659.10.1155/2020/8842659736893632695181 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other