Open Access

Bcl-2 Family Overexpression and Chemoresistance in Acute Myeloid Leukemia


Cite

1. Abdel-Magid A. F. (2015). Inhibitors of the Antiapoptotic Myeloid Cell Leukemia-1 (Mcl-1) May Provide Effective Treatment for Cancer. ACS Medical Chemistry Letter, 6: 1171–1173. dx.doi.org/10.1021/acsmedchemlett.5b0043810.1021/acsmedchemlett.5b00438Open DOISearch in Google Scholar

2. AlBakr R. B, Khojah O. T. (2014). Incidence Trend of the Leukemia Reported Cases in the Kingdom of Saudi Arabia, Observational Descriptive Statistic from Saudi Cancer Registry. International Journal Biomedical Research, 5(8).10.7439/ijbr.v5i8.736Search in Google Scholar

3. Anderson M. A, Huang D, Robertsa A. 2014. Targeting BCL2 for the Treatment of Lymphoid Malignancies. Seminar of Hematolology, 51(3), 219–227.10.1053/j.seminhematol.2014.05.008Search in Google Scholar

4. Marshall K. D & Baines C. P. 2014. Necroptosis: Is there a role for mitochondria? Frontier of Physiology, 5, 323.10.3389/fphys.2014.00323Search in Google Scholar

5. Asif N, Hassan K. 2013. Acute Myeloid Leukemia amongst Adults. Journal of Islamabad Medical & Dentistry College (JIMDC), 2(4), 58-63.Search in Google Scholar

6. Zhao H, Jaffer T, Eguchi S, Wang Z, Linkermann A, Ma D. (2015). Role of necroptosis in the pathogenesis of solid organ injury. Cell death and disease, 6, 1-10.10.1038/cddis.2015.316Search in Google Scholar

7. Gozuacik D, Kimchi A. (2007). Autophagy and Cell Death. Current topics in developmental biology, 78, 217-245. https://doi.org/10.1016/S0070-2153(06)78006-110.1016/S0070-2153(06)78006-1Open DOISearch in Google Scholar

8. Martin S. J, Henry C. M, Cullen S.P. (2012). A perspective on mammalian caspases as positive and negative regulators of inflammation. Molecular, 46(4), 387–397. doi: 10.1016/j.molcel.2012.04.026.2263348710.1016/j.molcel.2012.04.026Search in Google Scholar

9. Mohana-Kumaran N, Hill D. S, Allen J. D, Haass N. K. (2014). Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Research, 4, 525-39. doi:10.1111/pcmr. 12242. Epub 2014.10.1111/pcmr.12242.Epub2014Open DOISearch in Google Scholar

10. Hajji N. Joseph B. (2010). Epigenetic regulation of cell life and death decisions and deregulation in cancer. Essays in Biochemistry, 48, 121-146.10.1042/bse048012120822491Search in Google Scholar

11. Hockenbery D. M. (1994). bcl-2 in cancer, development and apoptosis. Journal of Cell Science, Supplement, 18, 51–55.10.1242/jcs.1994.Supplement_18.77883792Search in Google Scholar

12. Yip K. W, Reed J. C. (2008). Bcl-2 family proteins and cancer. Oncogene, 27(50), 6398–6406. https://doi.org/10.1038/onc.2008.30710.1038/onc.2008.30718955968Open DOISearch in Google Scholar

13. Frenzel, A., Grespi, F., Chmelewskij, W. & Villunger. A. (2009). Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis. 14(4); 584–596. doi:10.1007/s10495-008-0300-z.10.1007/s10495-008-0300-z327240119156528Open DOISearch in Google Scholar

14. Kelly P, Strasser A. (2011). The role of Bcl-2 and its prosurvival relatives in tumourigenesis and cancer therapy. Cell Death and Different, 18(10), 1414–1424. https://doi.org/10.1038/cdd.2011.1710.1038/cdd.2011.17314974021415859Search in Google Scholar

15. Susan F. L, Brad C. T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and immunity, 73(4), 1907-16.10.1128/IAI.73.4.1907-1916.2005Search in Google Scholar

16. Doerflinger M, Glab J. A, Puthalakath H. (2015). BH3- only proteins: a 20-year stock-take. FEBS Journal, 282,1006–1016. doi:10.1111/febs.1319010.1111/febs.13190Search in Google Scholar

17. Dewson, G, Kluck R. M. (2009). Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Journal of Cell Science, 122, 2801-8.10.1242/jcs.038166Search in Google Scholar

18. Ghatage D D, Gosavi S R, Ganvir S. M, Hazarey V. K. (2012). Apoptosis: Molecular mechanism. Journal Orofacial Science, 4 (2).10.4103/0975-8844.106199Search in Google Scholar

19. Barak Y, Juven T, Haffner R. (1993). mdm2 expression is induced by wild type p53 activity. EMBO Journal, 12, 461–468.10.1002/j.1460-2075.1993.tb05678.xSearch in Google Scholar

20. Belizário J, Cordeiro L. V, Enns S. (2015). Necroptotic Cell Death Signaling and Execution Pathway: Lessons from Knockout Mice. Hindawi Publishing Corporation Mediators of Inflammation, 15.10.1155/2015/128076Search in Google Scholar

21. Bensi L, Longo R, Vecchi A, Messora C, Garagnani L, Bernardi M. S, Tamassia G, Sacchi S. (1995). BCL-2 Oncoprotein Expression in Acute Myeloid Leukemia. Haematology, 80, 98-102.Search in Google Scholar

22. Billard C. (2015). Apoptosis as a Therapeutic Target in Chronic Lymphocytic Leukemia. Lymphocytitc and Chonic Lymphocytic Leukemia, 5, 11–15. doi:10.4137/LCLL.S13718.10.4137/LCLL.S13718Open DOISearch in Google Scholar

23. Blau O. (2015). Gene Mutations in Acute Myeloid Leukemia- Incidence, Prognostic Influence, and Association with Other Molecular Markers. INTECH, 75-100.10.5772/60928Search in Google Scholar

24. Blatt N. B, Glick G. D. (2001). Signaling pathways and effector mechanisms pre-programmed cell death. Bioorganic and Medical Chemistry, 9(6), 1371-84.10.1016/S0968-0896(01)00041-4Search in Google Scholar

25. Fisher A. (1937). The theory of the developmental physiology of malignant tumor. The American journal of cancer, 31(10).Search in Google Scholar

26. Breckenridge D. G, Germain M, Mathai J. P, Nguyen M, Shore G. C. (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 22, 8608–8618. doi:10.1038/sj.onc.120710810.1038/sj.onc.120710814634622Open DOISearch in Google Scholar

27. Bruin E. C, Medema J. P. (2008). Apoptosis and nonapoptotic deaths in cancer development and treatment response. Cancer Treatment Reviews, 34(8), 737-749. doi: http://dx.doi.org/10.1016/j.ctrv.2008.07.00110.1016/j.ctrv.2008.07.00118722718Search in Google Scholar

28. Brunelle J. K, Letai A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Science, 122, 437-441.10.1242/jcs.031682271443119193868Search in Google Scholar

29. Chaabane W, User S. D, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos M. J. (2013). Autophagy, Apoptosis, Mitoptosis and Necrosis: Interdependence Between Those Pathways and Effects on Cancer. Archive of Immunology Therapy and Experimental, 61, 43–58, (2013). DOI 10.1007/s00005-012-0205-y10.1007/s00005-012-0205-y23229678Open DOISearch in Google Scholar

30. Chipuk J. E. (2015). BCL-2 proteins: melanoma lives on the edge. Oncoscience, 34(7), 857-67.10.18632/oncoscience.193460599726501069Search in Google Scholar

31. Chonghaile T. N, Letai A. (2009). Mimicking the BH3 domain to kill cancer cells. Oncogene, 27, 149–157. doi:10.1038/onc.2009.5210.1038/onc.2009.52373326519641500Open DOISearch in Google Scholar

32. Thorburn A. (2008). Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis, 13(1), 1-9. Doi: 10.1007/s10495-007-0154-910.1007/s10495-007-0154-9260159517990121Open DOISearch in Google Scholar

33. Kelly P, Strasser A. (2011). The role of Bcl-2 and its prosurvival relatives in tumourigenesis and cancer therapy. Cell Death and Differentiation, 18(10), 1414–1424. https://doi.org/10.1038/cdd.2011.1710.1038/cdd.2011.17314974021415859Search in Google Scholar

34. Palai T. K, Mishra S. R. (2015). Caspases: An apoptosis mediator. Journal of Advanced Veerinary and Animal Research, 2(1), 18-22. doi: 10.5455/javar.2015.b5210.5455/javar.2015.b52Open DOISearch in Google Scholar

35. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. (2014). Autophagic Cell Death and Cancer. International Journal of Molecular Science, 15, 3145-3153. doi:10.3390/ijms1502314510.3390/ijms15023145395890224566140Open DOISearch in Google Scholar

36. Siddiqui W. A, Ahad A, Ahsan H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of Toxicology, 89, 289-317.10.1007/s00204-014-1448-725618543Search in Google Scholar

37. Singh L, Pushker N, Saini N, Sen S, Sharma A, Bakhshi S, Chawla B, Kashyap S. (2015). Expression of proapoptotic Bax and anti-apoptotic Bcl-2 proteins in human retinoblastoma. Clinical Experimental Ophthopedic, 43, 259–267. doi: 10.1111/ceo.123910.1111/ceo.1239Open DOISearch in Google Scholar

38. Su Z, Yang Z, Xu Y, Chen Y, Qiang Y. Q. (2015). Apoptosis, autophagy, necroptosis, and cancer metastasis. Molecular Cancer, 14(48). Doi:10.1186/s12943-015-0321-510.1186/s12943-015-0321-5Open DOISearch in Google Scholar

39. Guicciardi M. E, Gores G. J. (2009). Life and death by death receptors. FASEBJ, 23(6), 1625-37. doi: 10.1096/fj.08-111005.10.1096/fj.08-111005Open DOISearch in Google Scholar

40. Marsden V. S, Ekert P. G, Delft M. V, Vaux D. L, Adams J. M, Strasser A. (2004). Bcl-2–regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase- 9. The Journal of Cell Biology, 165(6),775–780. http://www.jcb.org/cgi/doi/10.1083/jcb.20031203010.1083/jcb.200312030Open DOISearch in Google Scholar

41. Mason K, Vandenberga C. J, Scotta C. L, Wei A. H, Corya S, Huanga D. (2008). In vivo ef cacy of the Bcl- 2 antagonist ABT-737 against aggressive Myc-driven lymphomas. The Proceedings of the National Academy of Sciences, 105, 17961-17966.10.1073/pnas.0809957105Search in Google Scholar

42. Mérino D, Khaw S. L, Glaser S. P, Anderson D. J, Belmont L. D, Wong C. (2012). Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263 in lymphoid and leukemic cells. Blood, 119, 5807-5816.10.1182/blood-2011-12-400929Search in Google Scholar

43. Mehdipour P, Santoro F, Minucci S.(2015). Epigenetic alterations in acute myeloid leukemias. FEBS Journal, 282, 1786–1800. doi:10.1111/febs.1314210.1111/febs.13142Open DOISearch in Google Scholar

44. Momand J, Zambetti G. P, Olson D. C. (1991). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237–1245.10.1016/0092-8674(92)90644-RSearch in Google Scholar

45. Kang M. H, Reynolds C. P. (2009). Bcl-2 Inhibitors: Targeting Mitochondrial Apoptotic Pathways in Cancer Therapy. Clinical Cancer Research, 15(4). doi:10.1158/1078-0432.CCR-08-014410.1158/1078-0432.CCR-08-0144318226819228717Open DOISearch in Google Scholar

46. Koff J. L, Ramachandiran S, Bernal-Mizrachi L. (2015). A Time to Kill: Targeting Apoptosis in Cancer. International Journal Molecular Science, 16, 2942-2955. doi:10.3390/ijms1602294210.3390/ijms16022942434687425636036Open DOISearch in Google Scholar

47. Kontny U, Lissat A. (2015). Apoptosis and drug resistance in malignant bone tumors. Primary bone tumours. Doi: 10.1016/B978-0-12-416721-6.00036-410.1016/B978-0-12-416721-6.00036-4Open DOISearch in Google Scholar

48. Lavrik I. N. (2014). Systems biology of death receptor networks: live and let die. Cell Death and Disease, 5. doi:10.1038/cddis.2014.16010.1038/cddis.2014.160404788124874731Open DOISearch in Google Scholar

49. Leber B, Lin J, Andrews D. W. (2010). Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene, 29, 5221-30.10.1038/onc.2010.283645940720639903Open DOISearch in Google Scholar

50. Letai A, Sorcinelli M. D, Beard C, Korsmeyer S. J. (2002). Antiapoptotic BCL-2 is required for maintenance of a model leukemia. Cancer Cell, 6, 241–9.10.1016/j.ccr.2004.07.01115380515Search in Google Scholar

51. Le´veille F, Papadia S, Fricker M, Bell K. F. S, Soriano F. X, Martel M, Puddifoot C, Habel M, Wyllie D. J, Ikonomidou C, Tolkovsky A. M, Hardingham G. E. (2010). Suppression of the Intrinsic Apoptosis Pathway by Synaptic Activity. The Journal of Neurology, 30(7), 2623–2635.10.1523/JNEUROSCI.5115-09.2010283492720164347Search in Google Scholar

52. Liu B, Bhatt D, Oltvai Z. N, Greenberger J. S, Bahar I. (2014). Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Scientific Reports, 4, 6245. Doi: 10.1038/srep0624510.1038/srep06245415010625175563Open DOISearch in Google Scholar

53. Li M. X, Dewson G. (2015). Mitochondria and apoptosis: emerging concepts. F1000Prime Reports, 7(42). doi:10.12703/P7-42.10.12703/P7-42444703226097715Open DOISearch in Google Scholar

54. Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. (2017). Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Medical Genomics, 10(1),18. https://doi.org/10.1186/s12920-017-0249-210.1186/s12920-017-0249-2542342128340577Open DOISearch in Google Scholar

55. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian S. V, Hainaut P, Olivier M. (2007). Impact of Mutant p53 Functional Properties on TP53 Mutation Patterns and Tumor Phenotype: Lessons from Recent Developments in the IARC TP53 Database. Human mutation, 28(6), 622-629.10.1002/humu.2049517311302Search in Google Scholar

56. Llambi F, Moldoveanu T, Tait Stephen W. G, Bouchier- Hayes L, Temirov J, McCormick L. L, Dillon C. P, Green D. R. (2011). A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Molecular Cell, 44, 517-31.10.1016/j.molcel.2011.10.001322178722036586Open DOISearch in Google Scholar

57. Fulda S, Debatin K. M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25(34), 4798-811.10.1038/sj.onc.1209608Search in Google Scholar

58. Löwenberg B, Rowe J. M. (2015). Introduction to the review series on advances in acute myeloid leukemia (AML). Blood, 127(1). doi:10.1182/blood-2015-10-6626810.1182/blood-2015-10-66268Open DOISearch in Google Scholar

59. Mongiat M, Ligresti G, Marastoni S, Lorenzon E, Doliana R, Alfonso C. Regulation of the Extrinsic Apoptotic Pathway by the Extracellular Matrix Glycoprotein EMILIN2. (2007). Molecular Cell Biology, 27(20), 7176–7187. doi:10.1128/MCB.00696-0710.1128/MCB.00696-07Open DOISearch in Google Scholar

60. Moore V. D. G, Letai A. (2012). BH3 profiling – measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions. Cancer Letter, 332(2), 202–205. doi:10.1016/j.canlet.2011.12.021.10.1016/j.canlet.2011.12.021Open DOISearch in Google Scholar

61. Moore D. G. V, Brown J. R, Certo M. (2007). Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. Journal of Clinical Investiment, 117, 112–21.10.1172/JCI28281Search in Google Scholar

62. Naseri H. M, Mahdavi M, Davoodi J, Tackallou S. H, Goudarzvand M, Neishabouri S. H. (2015). Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell International, 15(55). Doi: 10.1186/s12935-015-0204-210.1186/s12935-015-0204-2Open DOISearch in Google Scholar

63. Ng S. Y, Davids M. S. (2014). Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma. Clinical Advanced Hematology Oncology, 12(4), 224-9.Search in Google Scholar

64. Noguchi M, Hirata N, Edamura T, Ishigaki S, Suizu F. (2015). Intersection of Apoptosis and Autophagy Cell Death Pathways. Austin Journal of Molecular & Cell Biology, 2(1), 1004.Search in Google Scholar

65. Oltersdorf T, Steven W, Elmore S. W, Shoemaker A. R, Armstrong R. C, Augeri D. J, Belli B. A. (2005). An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature, 435, 677-681.10.1038/nature03579Search in Google Scholar

67. Gibson L, Holmgreen S. P, Huang D. C, Bernard O, Copeland N. G, Jenkins N. A, Sutherland G. R, Baker E, Adams J. M, Cory S. (1996). Bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncology, 13(4), 665-75.Search in Google Scholar

68. Zhong Q, Gao W, Du F, Wang X. (2005). Mule/ARFBP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquiti-nation of Mcl-1 and regulates apoptosis. Cell, 121, 1085–1095.10.1016/j.cell.2005.06.009Search in Google Scholar

69. Czabotar P. E, Lee E. F, Delft M. F, Day C. L, Smith B. J, Huang D. C. S, Fairlie W. D, Hinds M. G, Colman P.M. (2007). Structural insights into the degradation of Mcl-1 induced by BH3 domain. Proceedings of the National Academy of Sciences, 104 (15) 6217-6222. DOI:10.1073/pnas.070129710410.1073/pnas.0701297104Open DOISearch in Google Scholar

70. Huang D. C. S, Strasser A. (2000). BH3-Only Proteins— Essential Initiators of Apoptotic Cell Death. Cell, 103, 839–842.10.1016/S0092-8674(00)00187-2Search in Google Scholar

71. Shamas-Din A, Kale J, Leber B, Andrews D. W. (2013). Mechanisms of Action of Bcl-2 Family Proteins. Cold Spring Harbor Perspective in Biology. doi: 10.1101/cshperspect. a00871410.1101/cshperspect.a008714368389723545417Open DOISearch in Google Scholar

72. Belka C, Budach W. (2002). Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. International journal of radiation Biology, 78(8), 643-658. Doi: 10.1080/0955300021013768 010.1080/09553000210137680Search in Google Scholar

73. Bouillet P, Metcalf D, Huang D. C, Tarlinton D. M, Kay T. W, Kontgen F, Adams J. M, Strasser A. (1999). Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science, 286, 1735–1738.10.1126/science.286.5445.173510576740Search in Google Scholar

74. Polcic P, Jaká P, Mentel M. (2015). Yeast as a tool for studying proteins of the Bcl-2 family. Microbiology Cell, 2(3), 74-87. doi: 10.15698/mic2015.03.19310.15698/mic2015.03.193534918128357280Open DOISearch in Google Scholar

75. Sáez G. A. J. (2012). The secrets of the Bcl-2 family. Cell Death Differentiation, 11, 1733-40. doi: 10.1038/cdd.2012.105.10.1038/cdd.2012.105346906522935609Open DOISearch in Google Scholar

76. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli K. J, Debatin K. M, Krammer P. H, Peter M. E. (1998). Two CD95 (APO-1/Fas) signaling pathways. The EMBO Journal, 17(6), 1675–1687.10.1093/emboj/17.6.167511705159501089Open DOISearch in Google Scholar

77. Schnerch D, Yalcintepe J, Schmidts A, Becker H, Follo M, Engelhardt M, Wäsch R. (2012). Cell cycle control in acute myeloid leukemia. American Journal of Cancer Research, 2(5), 508-528.Search in Google Scholar

78. Scandura J. M, Boccuni P, Cammenga J, Nimer S. D. (2002). Transcription factor fusions in acute leukemia: variations on a theme. Oncogene, 21, 3422-3444. Doi: 10.1038/sj/onc/120531510.1038/sj/onc/1205315Open DOISearch in Google Scholar

79. Shimizu S, Yoshida T, Tsujioka M, Arakawa S. (2014). Autophagic Cell Death and Cancer. International Journal of Molecular Science, 15, 3145-3153. doi:10.3390/ijms1502314510.3390/ijms15023145395890224566140Open DOISearch in Google Scholar

80. Smaili S. S, Hsu Y. T, Carvalho A. C. P, Rosenstock T. R, Sharpe J. C, Youle, R. J. (2003). Mitochondria, calcium and pro-apoptotic proteins as mediators in cell death signaling. Brazilian Journal of Medical Biology Research. 36(2), 183-190.10.1590/S0100-879X200300020000412563519Search in Google Scholar

81. Strasser A. (2005). The role of BH3-only proteins in the immune system. Nature Reviews Immunology, 5, 189-200.doi:10.1038/nri156810.1038/nri156815719025Open DOISearch in Google Scholar

82. Sun Z, Cheng Z, Taylor C. A, McConkey B, Thompson J. E. (2010). Apoptosis Induction by eIF5A1 Involves Activation of the Intrinsic Mitochondrial Pathway. Journal of Cell Physiology, 223, 798–809. Doi: 10.1002/jcp.2210010.1002/jcp.2210020232312Open DOISearch in Google Scholar

83. Tian K.Y, Liu X. J, Xu J.D, Deng L. J, Wang G. (2015). Propofol inhibits burn injury-induced hyperpermeability through an apoptotic signal pathway in microvascular endothelial cells. Brazilian Journal of Medical Biology Research, 48(5), 401-407. http://dx.doi.org/10.1590/1414-431X2014410710.1590/1414-431X20144107Open DOISearch in Google Scholar

84. Trump B. F, Berezesky I. K, Chang, S. H, Phelps P. C. (1997). The Pathways of Cell Death: Oncosis, Apoptosis, and Necrosis. Toxicologic Pathology, 25(1), 82-8. Doi: 10.1177/01926233970250011610.1177/019262339702500116Search in Google Scholar

85. Tiwari M, Sharma L. K, Saxena A. K, Godbole M. M. (2015). Interaction Between Mitochondria and Caspases: Apoptotic and Non-Apoptotic Roles. Cell Biology, 3(2), 22-30. doi: 10.11648/j.cb.s.2015030201.1410.11648/j.cb.s.2015030201.14Open DOISearch in Google Scholar

86. Tzifi F, Economopoulou C, Gourgiotis D, Ardavanis A, Papageorgiou S, Scorilas A. (2012). The Role of BCL2 Family of Apoptosis Regulator Proteins in Acute and Chronic Leukemias. Hindawi Public Corporation Advanced Hematology, doi:10.1155/2012/524308.10.1155/2012/524308Open DOISearch in Google Scholar

87. Vela L, Gonzalo O, Naval J, Marzo I. (2013). Revealed by fluorescence complementation. Journal of Biological Chemistry, doi:10.1074/jbc.M112.42220410.1074/jbc.M112.422204Open DOISearch in Google Scholar

88. Verbrugge I, Johnstone R. W, Smyth M. J. (2010). Snap- Shot: Extrinsic Apoptosis Pathways. Cell, 143(7), 1192. DOI 10.1016/j.cell.2010.12.00410.1016/j.cell.2010.12.004Open DOISearch in Google Scholar

89. Vo T. T, Ryan J, Carrasco R, Neuberg D, Rossi D. J, Stone R. M, Letai A. (2012). Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell, 151(2), 344-355.10.1016/j.cell.2012.08.038Search in Google Scholar

90. El-Shakankiry N. H, El-Sayed G. M, El-Maghraby S, Moneer M. M. (2009). Bcl-2 protein expression in egyptian acute myeloid leukemia. Journal of Egypt Natural Cancer Institute, 21(1), 71–6.Search in Google Scholar

91. Shi Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell. https://doi.org/10.1016/S1097-2765(02)00482-310.1016/S1097-2765(02)00482-3Open DOISearch in Google Scholar

92. Wang R. A, Li Z. S, Yan Q. Q, Bian X. W, Ding Y. Q, Xiang D. X, Sun B. C, Yun-Tian S. Y. T, Xiang-Hong Zhang X. H. (2014). Resistance to apoptosis should not be taken as a hallmark of cancer. Chinese Journal of Cancer, 33(2).10.5732/cjc.013.10131393500524417874Search in Google Scholar

93. Wei A. Teh T. C. (2012). Primed for the kill: occupying Bcl-2 to target death in acute myeloid leukaemia. Bio- Discovery, 6(1). doi:10.7750/BioDiscovery.2012.610.7750/BioDiscovery.2012.6Open DOISearch in Google Scholar

94. Weyhenmeyer B, Murphy A. C, Prehn J. H. M, Murphy B. M. (2012). Targeting the anti-apoptotic BCL-2 family members for the treatment of cancer. Experimental Oncology, 34, 192–199.23070004Search in Google Scholar

95. Woess C, Tuzlak S, Labi V, Drach M, Bertele D, Schneider P, Villunger A. (2015). Combined loss of the BH3- only proteins Bim and Bmf restores B-cell development and function in TACI-Ig transgenic mice. Cell Death Differentiation, 22, 1477–1488. doi: 10.1038/cdd.2015.810.1038/cdd.2015.8453278425698446Open DOISearch in Google Scholar

96. Wu M, Ding H. F, Fisher D. E. Apoptosis: Molecular Mechanisms. Encyclopedia of Life Science 2001.10.1023/A:1011342220621Open DOISearch in Google Scholar

97. Yip K. W, Reed J. C. (2008). Bcl-2 family proteins and cancer. Oncology, 27, 6398–6406.10.1038/onc.2008.307Search in Google Scholar

98. Yohe S. (2015). Molecular Genetic Markers in Acute Myeloid Leukemia. Journal of Clinical Medicine, 4, 460-478 (2015). doi:10.3390/jcm403046010.3390/jcm4030460447013926239249Open DOISearch in Google Scholar

99. Youle R. J, Strasser A. (2005). The BCL-2 protein family: op- posing activities that mediate cell death. Nature Reviews of Molecular and Cell Biology, 9, 47–59.10.1038/nrm2308Search in Google Scholar

100. Perez-Stable C, Parrondo R, De Las Pozas A, Reiner T. (2013). ABT-737, a small molecule Bcl-2/Bcl-xL antagonist, increases antimitotic- mediated apoptosis in human prostate cancer cells. Biochemistry, biophysics and molecular biology, https://doi.org/10.7717/peerj.14410.7717/peerj.144377563124058878Open DOISearch in Google Scholar

101. Zhao G, Zhu Y, Eno C. O, Liu Y, DeLeeuw L, Joseph A, Burlison J. A, Chaires J. B, Trent J. O, Li C. (2014). Activation of the Proapoptotic Bcl-2 Protein Bax by a Small Molecule Induces Tumor Cell Apoptosis. Molecular Cell Biology, 34(7), 1198–1207. doi:10.1128/MCB.00996-1310.1128/MCB.00996-13399356124421393Open DOISearch in Google Scholar

102. Zong W. X, Lindsten T, Ross A. J, MacGregor G. R, Thompson C. B. (2001). BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Gene & Development, 15, 1481–1486.10.1101/gad.89760131272211410528Open DOISearch in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other