Open Access

Unfolded Protein Response Is Activated in the Hearts of Catecholaminergic Polymorphic Ventricular Tachycardia (Cpvt) Mice

   | Oct 10, 2014

Cite

1. Myerburg RJ, Conde CA, Castellanos A. Survivors of prehospital cardiac arrest. JAMA 1982; 247: 1485-90.10.1001/jama.1982.03320350081041Search in Google Scholar

2. Zipes DP, Camm AJ, Borggrefe M, Buxton AE et al. American College of Cardiology/American Heart Association Task Force; European Society of Cardiology Committee for Practice Guidelines; European Heart Rhythm Association; Heart Rhythm Society. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: A report of the American College of Cardiology/American Heart Association Task Force and theEuropean Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death) Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006; 114: 385-84.Search in Google Scholar

3. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, Sorrentino V, Danieli GA. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196-200.10.1161/01.CIR.103.2.196Search in Google Scholar

4. Brunello L, Slabaugh JL, Radwanski PB et al. Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia. Proc Natl Acad Sci U S A. 2013;110(25): 10312-17.10.1073/pnas.1300052110Search in Google Scholar

5. Eldar M, Pras E, Lahat H. A missense mutation in the CASQ2 gene is associated with autosomal-recessive catecholamine-induced polymorphic ventricular tachycardia. Trends Cardiovasc Med 2003; 13: 148-51.10.1016/S1050-1738(03)00025-2Search in Google Scholar

6. Napolitano C, Priori SG. Diagnosis and treatment of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2007; 4: 675-78.10.1016/j.hrthm.2006.12.04817467641Search in Google Scholar

7. Song L, Alcalai R, Arad M, Wolf CM, Toka O, Conner DA, Berul CI, Eldar M, Seidman CE, Seidman JG. Calsequestrin 2 (CASQ2) mutations increase axpression of calreticulin and ryanodine receptors, causing catecholaminergic polymorphic ventricular tachycardia. J Clin Inv 2007; 17: 1814-23.10.1172/JCI31080190431517607358Search in Google Scholar

8. Cerrone M, Colombi B, Santoro M et al. Bidirectional Ventricular Tachycardia and Fibrillation Elicited in a Knock-In Mouse Model Carrier of a Mutation in the Cardiac Ryanodine Receptor. Circ Res 2005; 96: e77-82.10.1161/01.RES.0000169067.51055.7215890976Search in Google Scholar

9. Rizzi N, Liu N, Napolitano C et al. Unexpected structural and functional consequences of the R33Q homozygous mutation in cardiac calsequestrin: a complex arrhythmogenic cascade in a knock in mouse model. Circ Res 2008; 13: 298-306. DOI: 10.1161/ CIRCRESAHA.108.171660.10.1161/CIRCRESAHA.108.17166018583715Search in Google Scholar

10. Flucher BE, Franzini-Armstrong C. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc Natl Acad Sci USA 1996; 93: 8101-06.10.1073/pnas.93.15.8101388828755610Search in Google Scholar

11. Beard NA, Laver DR, Dulhunty AF. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 2004; 85: 33-69.10.1016/j.pbiomolbio.2003.07.00115050380Search in Google Scholar

12. Beard NA, Wei L, Dulhunty AF. Ca(2+) signaling in striated muscle: the elusive roles of triadin, junctin, and calsequestrin. Eur. Biophys. J. 2009; 39: 27-36. DOI: 10.1007/s00249-009-0449-6.10.1007/s00249-009-0449-6Search in Google Scholar

13. Beard NA, Casarotto MG, Wei L, Varsanyi M, Laver DR, Dulhunty AF. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation. and phosphorylation. Biophys J 2005; 88: 3444-54.10.1529/biophysj.104.051441Search in Google Scholar

14. Tijskens P, Jones LR, Franzini-Armstrong C. Junctin and calsequestrin overexpression in cardiac muscle: the role of junctin and the synthetic and delivery pathways for the two proteins. J Mol Cell Cardiol 2003; 35: 961-74.10.1016/S0022-2828(03)00181-0Search in Google Scholar

15. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell. Dev. Biol. 2000; 16: 521-55.Search in Google Scholar

16. Terentyev D, Nori A, Santoro M, Viatchenko-Karpinski S et al. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death. Circ Res 2006; 98: 1151-58.10.1161/01.RES.0000220647.93982.0816601229Search in Google Scholar

17. Kirchhefer U, Wehrmeister D, Postma AV, Pohlentz G, Mormann M, Kucerova D, Muller FU, Schmitz W, Schulze-Bahr E, Wilde AA, Neumann J. The human CASQ2 mutation K206N is associated with hyperglycosylation and altered cellular calcium handling. J Mol Cell Cardiol 2010; 49: 95-105. DOI: 10.1016/j. yjmcc.2010.03.006.Search in Google Scholar

18. di Barletta MR, Viatchenko-Karpinski S, Nori A, Memmi M, Terentyev D, Turcato F, Valle G, Rizzi N, Napolitano C, Gyorke S, Volpe P, Priori SG. Clinical phenotype and functional characterization of CASQ2 mutations associated with Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation 2006; 114: 1012-19.10.1161/CIRCULATIONAHA.106.62379316908766Search in Google Scholar

19. Chopra N, Yang T, Asghari P, Moore ED et al. Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias. Proc Natl Acad Sci USA 2009; 106: 7636-41. DOI: 10.1073/pnas.0902919106.10.1073/pnas.0902919106267859419383796Search in Google Scholar

20. Groenendyk J, Sreenivasaiah PK, Kim do H, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res 2010; 107: 1185-97. DOI: 10.1161/CIRCRESAHA.110.227033.10.1161/CIRCRESAHA.110.22703321071716Search in Google Scholar

21. Glembotski C. Endoplasmic reticulum stress in the heart. Circ. Res 2007; 101: 975-84.10.1161/CIRCRESAHA.107.16127317991891Search in Google Scholar

22. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2002; 2: 326-32.10.1038/3501401410854322Search in Google Scholar

23. Brodsky JL. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmicreticulum- associated degradation). Biochem J 2007; 404: 353-63.10.1042/BJ20061890274777317521290Search in Google Scholar

24. Maattanen P, Gehring K, Bergeron JJ, Thomas DY. Protein quality control in the ER: the recognition of misfolded proteins. Semin Cell Dev Biol 2010; 21: 500-511. DOI: 10.1016/j.semcdb.2010.03.006.10.1016/j.semcdb.2010.03.00620347046Search in Google Scholar

25. Bernales, S., McDonald, K.L. and Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006; 4: 423.10.1371/journal.pbio.0040423166168417132049Search in Google Scholar

26. Glembotski C. The role of the unfolded protein response in the heart. J Mol Cell Card 2007; 44: 453-59.10.1016/j.yjmcc.2007.10.017274671818054039Search in Google Scholar

27. Gustafsson AB. Bnip3 as a dual regulator of mitochondrial turnover and cell death in the myocardium. Pediatr Cardiol 2011; 32: 267-274. DOI: 10.1007/s00246-010-9876-5.10.1007/s00246-010-9876-5305107521210091Search in Google Scholar

28. Lee JW, Kim WH, Yeo J Jung MH. ER stress is implicated in mitochondrial dysfunction-induced apoptosis of pancreatic beta cells. Mol Cells 2010; 30: 545-549. DOI: 10.1007/s10059-010-0161-5. 10.1007/s10059-010-0161-521340672Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other