Open Access

Calibration of Hypoplastic Parameters for Danube Sand


Cite

Arnold, M. (2008) Application of the intergranular strain concept to the hypoplastic modelling of non- adhesive interfaces. 12th International Conference on Computer Methods and Advances in Geomechanics 2008, 1(1999), 747–754.Search in Google Scholar

Bauer, E. – Kovtunenko, V. A. – Krejčí, P. – Krenn, N. – Siváková, L. – Zubkova, A. V. (2020) On proportional deformation paths in hypoplasticity. Acta Mechanica, 231(4), 1603–1619. https://doi.org/10.1007/s00707-019-02597-3Search in Google Scholar

Fellin, W. (2002) Hypoplasticity for beginners. Institu Für Geotechnik Und Tunnelbau, (June), 1–6. Retrieved from ftp://ftp.uibk.ac.at/pub/uni-innsbruck/igt/publications/_fellin/hypo_beginner.pdfSearch in Google Scholar

Fu, Z. – Chen, S. – Zhong, Q. – Ji, E. (2021) A damage hypoplasticity constitutive model for cemented sand and gravel materials. Acta Geotechnica, 9. https://doi.org/10.1007/s11440-021-01206-9Search in Google Scholar

Fuentes, W. – Wichtmann, T. – Gil, M. – Lascarro, C. (2020) ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis. Acta Geotechnica, 15(6), 1513–1531. https://doi.org/10.1007/s11440-019-00846-2Search in Google Scholar

Gajári, G. – Kisgyörgy, L. – Ádány, S. – Mahler, A. – Lógó, J. (2021) A visco-hypoplastic constitutive model for rolled asphalt. Period-ica Polytechnica Civil Engineering, 65(3), 798–809. https://doi.org/10.3311/PPci.17515Search in Google Scholar

Herle, I. – Gudehus, G. (1999) Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies. Mechanics of Cohesive-Frictional Materials, 4(5), 461–486. https://doi.org/10.1002/(SICI)1099-1484(199909)4:5<461::AIDCFM71>3.0.CO;2-PSearch in Google Scholar

Herle, I. – Kolymbas, D. (2004) Hypoplasticity for soils with low friction angles. Computers and Geotechnics, 31(5), 365–373. https://doi.org/10.1016/j.compgeo.2004.04.002Search in Google Scholar

Kadlíček, T. – Janda, T. – Šejnoha, M. (2016) Calibration of Hypoplastic Models for Soils. Applied Mechanics and Materials, 821, 503–511. https://doi.org/10.4028/www.scientific.net/amm.821.503Search in Google Scholar

Kadlíček, T. – Janda, T. – Šejnoha, M. – Mašín, D. – Najser, J. – Beneš, Š. (2022) Automated calibration of advanced soil constitutive models. Part I: hypoplastic sand. Acta Geotechnica,17(8), 3421–3438. https://doi.org/10.1007/s11440-021-01441-0Search in Google Scholar

Khalaj, O. – Abedin Nejad, S. – Janda, T. (2021) Multi Elements Simulation of Biaxial Test with Two Different Soil Layers Using Hypoplastic Constitutive Model. IOP Conference Series: Materials Science and Engineering, 1161(1), 012001. https://doi.org/10.1088/1757-899x/1161/1/012001Search in Google Scholar

Kolymbas, D. – Wu, W. (1990) Recent results of triaxial tests with granular materials. Powder Technology, 60(2), 99–119. https://doi.org/10.1016/0032-5910(90)80136-MSearch in Google Scholar

Le, V. H. – Rackwitz, F. – Savidis, S. A. (2017) Accumulation of monopile deformation in sand due to change in load direction. (March 2018).Search in Google Scholar

Mašín, D. (2019) Modelling of Soil Behaviour with Hypoplasticity: Another Approach to Soil Constitutive Modelling.Search in Google Scholar

Mašín, D. (2015) Hypoplasticity for Practical Applications Part 4: Determination of material parameters.Search in Google Scholar

Mohammadi-Haji, B. – Ardakani, A. (2020) Calibration of a Hypoplastic Constitutive Model with Elastic Strain Range for Firoozkuh Sand. Geotechnical and Geological Engineering, 38(5), 5279–5293. https://doi.org/10.1007/s10706-020-01363-wSearch in Google Scholar

Moussa, A. – Salah, M. – Rafik, D. (2020) Improvement of a Hypoplastic Model for Granular Materials Under High-Confining Pressures. Geotechnical and Geological Engineering, 38(4), 3761–3771. https://doi.org/10.1007/s10706-020-01256-ySearch in Google Scholar

Namaei-kohal, A. – Ardakani, A. – Hassanlourad, M. (2022) Hypoplastic soil model parameters calibration for Tehran silica sand and verification with a monotonic geocell pullout test. Arabian Journal of Geosciences, 15(9). https://doi.org/10.1007/s12517-022-10110-9Search in Google Scholar

Ng, Ch. W. W. – Boonyarak, T. – Mašín, D. (2013) Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels. Canadian Geotechnical Journal, 50(9), 935–946. https://doi.org/10.1139/cgj-2012-0445Search in Google Scholar

Niemunis, A. – Herle, I. (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mechanics of Cohesive-Frictional Materials, 2(4), 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8Search in Google Scholar

Niemunis, A. – Wichtmann, T. – Triantafyllidis, T. (2005) A high-cycle accumulation model for sand. Computers and Geotechnics, 32(4), 245–263. https://doi.org/10.1016/j.compgeo.2005.03.002Search in Google Scholar

Poblete, M. – Fuentes, W. – Triantafyllidis, T. (2016) On the simulation of multidimensional cyclic loading with intergranular strain. Acta Geotechnica, 11(6), 1263–1285. https://doi.org/10.1007/s11440-016-0492-2Search in Google Scholar

Sturm, H. (2009) Numerical investigation of the stabilisation behaviour of shallow foundations under alternate loading. Acta Geotechnica, 4(4), 283–292. https://doi.org/10.1007/s11440-009-0102-7Search in Google Scholar

Stutz, H. H. – Wuttke, F. (2018) Hypoplasticmodeling of soil-structure interfaces in offshore applications. Journal of Zhejiang University: Science A, 19(8), 624–637. https://doi.org/10.1631/jzus.A1700469Search in Google Scholar

Stutz, H. – Mašín, D. – Sattari, A. S. – Wuttke, F. (2017a) A general approach to model interfaces using existing soil constitutive models application to hypoplasticity. Computers and Geotechnics, 87, 115–127. https://doi.org/10.1016/j.compgeo.2017.02.010Search in Google Scholar

Stutz, H. – Mašín, D. – Sattari, A. S. – Wuttke, F. (2017b) A general approach to model interfaces using existing soil constitutive models application to hypoplasticity. Computers and Geotechnics, 87, 115–127. https://doi.org/10.1016/j.compgeo.2017.02.010Search in Google Scholar

Stutz, H. – Mašín, D. – Wuttke, F. (2016) Enhancement of a hypoplastic model for granular soil–structure interface behaviour. Acta Geotechnica, 11(6), 1249–1261. https://doi.org/10.1007/s11440-016-0440-1Search in Google Scholar

Tsegaye, A. B. – Molenkamp, F. – Brinkgreve, R. B. J. – Bonnier, P. G. – De Jager, R. – Galavi, V. (2010) Modeling liquefaction behavior of sands by means of hypoplastic model. Numerical Methods in Geotechnical Engineering - Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering, (1), 81–87. https://doi.org/10.1201/b10551-18Search in Google Scholar

von Wolffersdorff, P. A. (1996) Hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials, 1(3), 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3Search in Google Scholar

Wang, S. – Wu, W. (2020) A simple hypoplastic model for over-consolidated clays. Acta Geotechnica, 16(1), 21–29. https://doi.org/10.1007/s11440-020-01000-zSearch in Google Scholar

Wei, X. – Chen, Y. – Yang, J. (2020) A unified critical state constitutive model for cyclic behavior of silty sands. Computers and Geotechnics, 127 (July), 103760. https://doi.org/10.1016/j.compgeo.2020.103760Search in Google Scholar

Wichtmann, T. – Fuentes, W. – Triantafyllidis, T. (2019) Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypo-plasticity vs. Sanisand vs. ISA. Soil Dynamics and Earthquake Engineering, 124 (April 2018), 172–183. https://doi.org/10.1016/j.soildyn.2019.05.001Search in Google Scholar

Wichtmann, T. – Triantafyllidis, T. (2018) Monotonic and cyclic tests on kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotechnica, 13(5), 1103–1128. https://doi.org/10.1007/s11440-017-0588-3Search in Google Scholar

Wu, W. – Bauer, E. (1994) A simple hypoplastic constitutive model for sand. International Journal for Numerical and Analytical Methods in Geomechanics, 18(12), 833–862. https://doi.org/10.1002/nag.1610181203Search in Google Scholar

Wu, W. – Lin, J. – Wang, X. (2017) A basic hypoplastic constitutive model for sand. Acta Geotechnica, 12(6), 1373–1382. https://doi.org/10.1007/s11440-017-0550-4Search in Google Scholar

Yang, Z. – Liao, D. – Xu, T. (2020) A hypoplastic model for granular soils incorporating anisotropic critical state theory. International Journal for Numerical and Analytical Methods in Geomechanics, 44(6), 723–748. https://doi.org/10.1002/nag.3025Search in Google Scholar

eISSN:
1338-3973
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other