Open Access

Repair of Cracks in Concrete with the Microbial-Induced Calcite Precipitation (MICP) Method


Cite

Achal, V. – Mukherjee, A. –Basu,P.C. – Reddy, M.S.(2009) Lactose mother liquor as analternative nutrient s ource for microbial concrete production by Sporosarcina pasteurii. Journal of Industrial Microbiology and Biotechnology, 36(3), 433–438. https://doi.org/10.1007/s10295-008-0514-7 Search in Google Scholar

Andalib,R.– AbdMajid,M.Z.– Hussin,M.W.– Ponraj,M.– Keyvanfar,A.– Mirza, J.– Lee, H.-S. (2016) Optimum concentration of Bacillus megaterium for strengthening structural concrete. Construction and Building Materials 118, 180–193. https://doi.org/10.1016/j.conbuildmat.2016.04.142 Search in Google Scholar

Bachmeier, K.L.– Williams, A.E. – Warmington, J.R. – Bang, S.S. (2002) Urease activityin microbiologically-induced calcite precipitation. Journal of Biotechnology 93, 171–181.https://doi.org/10.1016/S0168-1656(01)00393-5 Search in Google Scholar

Beveridge, T.J. (1988) The bacterial surface: general considerations towards design andfunction. Can. J. Microbiol. 34, 363–372. https://doi.org/10.1139/m88-067 Search in Google Scholar

Chintalapudi, K. – Aparna, P. – Himabindu, P.S.S. – Amulya, S. (2017) Experimental Study on Bacterial-Based Self-Healing Concrete. Gokaraju Rangaraju Institute of Engineering & Technology 86. ISBN 978-93-5279-269-6. Search in Google Scholar

Choi, S.-G. – Wang, K. – Wen, Z. – Chu, J. (2017) Mortar crack repair using microbialinduced calcite precipitation method. Cement and Concrete Composites 83, 209–221. https://doi.org/10.1016/j.cemconcomp.2017.07.013 Search in Google Scholar

Danner, T. – Hjorth Jakobsen, U. – Geiker, M.R. (2019) Miner-alogical Sequence of Self-Healing Products in Cracked Marine Concrete. Minerals 9, 284. https://doi.org/10.3390/min9050284 Search in Google Scholar

De Muynck, W. – Cox, K. – Belie, N.D. – Verstraete, W. (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials 22, 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011 Search in Google Scholar

Feng, J. – Chen, B. – Sun, W. – Wang, Y. (2021) Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization. Construction and Building Materials 280, 122460. https://doi.org/10.1016/j.conbuildmat.2021.122460 Search in Google Scholar

Hammes, F. – Boon, N. – De Villiers, J. – Verstraete, W. – Siciliano, S.D. (2003) Strain-Specific Ureolytic Microbial Calcium Carbonate Precipitation. Applied and EnvironmentalMicrobiology69,4901–4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003 Search in Google Scholar

Jongvivatsakul, P. – Janprasit, K. – Nuaklong, P. – Pungrasmi, W. – Likitlersuang, S. (2019) Investigation of the crack healing performance in mortar using microbiallyinduced calcium carbonate precipitation (MICP) method. Construction and Building Materials 212, 737–744. https://doi.org/10.1016/j.conbuildmat.2019.04.035 Search in Google Scholar

Jonkers, H.M.– Thijssen, A. (2010) Bacteria mediated remediation of concrete structures,In Proceedings of 2nd International Symposium on Service Life Design for Infrastructure, 83-92, Delft: The Netherlands. e-ISBN: 978-2-35158-097-4 Publisher: RILEM Publications SARL Search in Google Scholar

Joshi, S. – Goyal, S. – Mukherjee, A. – Reddy, M.S. (2017) Microbial healing of cracks inconcrete: a review. Journal of Industrial Microbiology and Biotechnology 44, 1511– 1525. https://doi.org/10.1007/s10295-017-1978-0 Search in Google Scholar

Krishnapriya, S. –Babu, D.L. –Arulraj, G.P. (2015) Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research 174, 48–55. https://doi.org/10.1016/j.mi-cres.2015.03.009 Search in Google Scholar

Le Metayer-Levrel, G. – Castanier, S. –Orial, G. –Loubiere, J.F. –Perthuisot, J.P. (1999) Applications of bacterial carbonatogenesis to the protection and regenerationof limestones in buildings and historic patrimony. Sedimentary geology 126, 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9 Search in Google Scholar

Muhammad, N.Z. – Shafaghat, A. – Keyvanfar, A. – Abd. Majid, M.Z. – Ghoshal, S.K. – Mohammadyan, S.E.Y. – Ganiyu, A.A. – Samadi, M. K. – Kamyab, H. – Taheri, M.M. – Rezazadeh, M.S. – McCaffe, R. (2016) Tests and methods of evaluating the self-healing efficiency of concrete: A review. Construction and Building Materials 112, 1123–1132. https://doi.org/10.1016/j.conbuildmat.2016.03.017 Search in Google Scholar

Okwanda,G.D.–Li,J.(2010) Optimum conditions for microbial-carbonateprecipitation. Chemosphere, 81(9), 1143-1148. https://doi.org/10.1016/j.chemosphere.2010.09.066 Search in Google Scholar

Özhan, H. B. – Yıldırım, M. (2020) Effects of acid and high-temperature treatments ondurability of bacterial concrete. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1421-1430. https://doi.org/10.17482/uumfd.816087 Search in Google Scholar

Qian, C.– Zheng, T. –Zhang, X. – Su, Y.(2021) Application of microbial self-healingconcrete: Case study. Construction and Building Materials, 290, 123226. https://doi.org/10.1016/j.conbuildmat.2021.123226 Search in Google Scholar

Rao, M. S. – Reddy, V. S. – Sasikala, C. (2017) Performance of microbial concrete developed using bacillus subtilus JC3. Journal of The Institution of Engineers (India): Series A, 98, 501-510. https://doi.org/10.1007/s40030-017-0227-x Search in Google Scholar

Reddy, B. M. S.– Revathi, D.(2019) An experimental study on effect of Bacillus sphaericusbacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings, 19, 803-809. https://doi.org/10.1016/j.matpr.2019.08.135 Search in Google Scholar

Seifan,M.– Samani,A.K.– Berenjian,A.(2017)New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101, 3131-3142. https://doi.org/10.1007/s00253-017-8109-8 Search in Google Scholar

Siddique, R. – Nanda, V. – Kadri, E. H. – Khan, M. I. – Singh, M. – Rajor, A. (2016) Influence of bacteria on compressive strength and permeation properties of concretemade with cement bag-house filter dust. Construction and Building Materials, 106,461-469. https://doi.org/10.1016/j.conbuildmat.2015.12.112 Search in Google Scholar

TS 706 EN 12620+A1 (2009) Aggregates for concrete. Türk Standardı, Ankara. Search in Google Scholar

TS 802 (2016) Design Concrete Mixes. Türk Standardı, Ankara. Search in Google Scholar

Ujike, I. –Sato, R. –Okazaki, S. (2010) Proposal of effective concrete cover in consideration of deterioration by internal cracking. In: 2nd International Symposium on Service Life Design for In-frastructures (pp. 41-48). RILEM Publications SARL. Search in Google Scholar

Van Breugel, K. (2007) Is there a market for self-healing cement based materials? Proceedings of the First International Conference on Self Healing Materials 9. Search in Google Scholar

Van Tittelboom, K. – De Belie, N. – De Muynck, W. – Verstraete, W. (2010) Use ofbacteria to repair cracks in concrete. Cement and Concrete Research 40, 157–166. https://doi.org/10.1016/j.cemconres.2009.08.025 Search in Google Scholar

Wang, J.Y. – Snoeck, D. – Van Vlierberghe, S. – Verstraete, W. – De Belie, N. (2014a) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Construction and Building Materials 68, 110–119. https://doi.org/10.1016/j.conbuildmat.2014.06.018 Search in Google Scholar

Wang, J.Y. –Soens, H. –Verstraete, W. –De Belie, N. (2014b) Self-healing concrete by use of microencapsulated bacterial spores. Cement and concrete research 56,139–152. https://doi.org/10.1016/j.cemconres.2013.11.009 Search in Google Scholar

Wiktor, V. – Jonkers, H.M. (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites 33, 763–770. https://doi.org/10.1016/j.cemcon-comp.2011.03.012 Search in Google Scholar

Wu, M.– Hu,X.– Zhang, Q.– Xue,D.– Zhao, Y. (2019)Growthenvironment optimization for inducing bacterial mineralization and its application in concrete healing. Construction and Building Materials 209, 631–643. https://doi.org/10.1016/j.conbuild-mat.2019.03.181 Search in Google Scholar

Yıldırım, M. – Ozhan, H.B. (2023) Residual Durability Performance of Glass Fiber Reinforced Concrete Damaged by Compressive Stress Loads. Periodica Polytechnica Civil Engineering, 67(2), 392–401. https://doi.org/10.3311/PPci.21387 Search in Google Scholar

Yildirim, M. – Ozhan, H.B. – Oz, H.G. (2023) Bacteria-based self-healing of cementmortars loaded at different levels and exposed to high temperature. Magazine of Concrete Research, 75(13), 674-684. https://doi.org/10.1680/jmacr.22.00238 Search in Google Scholar

Zhang, J.– Zhou, A.– Liu, Y.– Zhao, B.– Luan, Y.– Wang, S.– Yue, X. – Li, Z. (2017) Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Sci Rep 7, 14600. https://doi.org/10.1038/s41598-017-15177-z Search in Google Scholar

eISSN:
1338-3973
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other