Open Access

The Potential and Implications of Automated Pre-Processing of LiDAR-Based Digital Elevation Models for Large-Scale Archaeological Landscape Analysis


Cite

Bini, M. – Pappalardo, M. – Rossi, V. – Noti, V. – Amorosi, A. – Sarti, G. (2018) Deciphering the effects of human activity on urban areas through morphostratigraphic analysis: The case of Pisa, Northwest Italy. Geoarchaeology, Vol. 33, pp. 43–51.10.1002/gea.21619 Search in Google Scholar

Boháčová, I. – Herichová, I. (2004) Georeliéf jako zdroj poznání historického vývoje lokality. Forum urbes medii aevi, Vol. 1, pp. 10-17. Search in Google Scholar

Brázdil, K. – Bělka, L. – Dušánek, P. – Fiala, R. – Gamrát, J. – Kafka, O. – Peichl, J. – Šíma, J. (2016) Technická zpráva k Digitálnímu modelu reliéfu 5. generace: DMR 5G Available at: https://geoportal.cuzk.cz/Dokumenty/TECHNICKA_ZPRAVA_DMR_5G.pdf, (accessed at 09/03/2022). Search in Google Scholar

Brughmans, T. – Van Garderen, M. – Gillings, M. (2018) Introducing visual neighbourhood configurations for total viewsheds. Journal of Archaeological Science, Vol. 96, pp. 14–25.10.1016/j.jas.2018.05.006 Search in Google Scholar

Chase, A.S.Z. – Chase, D.Z. – Chase, A.F. (2017) LiDAR for Archaeological Research and the Study of Historical Landscapes. In: N. Masini, F. Soldovieri, eds. Sensing the Past: From artifact to historical site. Geotechnologies and the Environment, Vol. 16, Cham: Springer.10.1007/978-3-319-50518-3_4 Search in Google Scholar

Crutchley, S. – Crow, P. (2009) The light fantastic: using airborne laser scanning in archaeological survey. Swindon: English Heritage. Search in Google Scholar

David, B. – Thomas, J. (eds.) (2008) Handbook of Landscape Archaeology. London and NY: Routledge. Search in Google Scholar

De Reu, J. – Bourgeois, J. – Bats, M. – Zwertvaegher, A. – Gelorini, V. – De Smedt, P. – Chu, W. – Antrop, M. – De Maeyer, P. – Finke, P. – Van Meirvenne, M. – Verniers, J. – Crombé, P. (2013) Application of the topographic position index to heterogeneous landscapes. Geomorphology, Vol. 186, pp. 39–49.10.1016/j.geomorph.2012.12.015 Search in Google Scholar

De Smedt, P. – Van Meirvenne, M. – Davies, N.S. – Bats, M. – Saey, T. – De Reu, J. – Meerschman, E. – Gelorini, V. – Zwertvaegher, A. – Antrop, M. – Bourgeois, J. – De Maeyer, P. – Finke, P.A. – Verniers, J. – Crombé, P. (2013) A multidisciplinary approach to reconstructing Late Glacial and Early Holocene landscapes. Journal of Archaeological Science, Vol. 40(2), pp. 1260–1267.10.1016/j.jas.2012.09.004 Search in Google Scholar

Garstki, K. (2020) Digital Innovations in European Archaeology. Elements in the Archaeology of Europe. Cambridge: Cambridge University Press.10.1017/9781108881425 Search in Google Scholar

Gibson, J.J. (1986) The Ecological Approach to Visual Perception. NJ: Psychology Press. Search in Google Scholar

Gillings, M. (2017) Mapping liminality: Critical frameworks for the GIS-based modelling of visibility. Journal of Archaeological Science, Vol. 84, pp. 121–128.10.1016/j.jas.2017.05.004 Search in Google Scholar

Gojda, M. – John, J. (eds.) (2013) Archeologie a letecké laserové skenování krajiny / Archaeology and airborne laser scanning of the landscape. Plzeň: Katedra archeologie FF ZČU. Search in Google Scholar

Habicht, H.L. – Rosentau, A. – Jöeleht, A. – Heinsalu, A. – Kriiska, A. – Kohv, M. – Hang, T. – Aunap, R. (2017) GIS-based multiproxy coastline reconstruction of the eastern Gulf of Riga, Baltic Sea, during the Stone Age. Boreas, Vol. 46, pp. 83–99.10.1111/bor.12157 Search in Google Scholar

Hengl, T. – Reuter – H.I. (eds.) (2009) Geomorphometry: Concepts, Software, Applications. Amsterdam: Elsevier. Search in Google Scholar

Herichová, I. (2019) Vrch hradní. Vývoj georeliéfu Pražského hradu v raném středověku. Prague: Archeologický ústav AV ČR. Search in Google Scholar

Hobič, J. (2020) List of freely accessible LiDAR data and digital terrain models [online]. Archaeology of Slovenia. Available at: https://arheologijaslovenija.blogspot.com/p/blog-page_81.html (accessed at 06/08/2021) Search in Google Scholar

Höfler, V. – Wessollek, C. – Karrasch, P. (2015) Modelling prehistoric terrain Models using LiDAR-data: a geomorphological approach. I Proc. of SPIE, 9644, Earth Resources and Environmental Remote Sensing/GIS Applications VI, 96440B.10.1117/12.2194290 Search in Google Scholar

Krebs, P. – Stocker, M. – Pezzatti, G.B. – Conedera, M. (2015) An alternative approach to transverse and profile terrain curvature. International Journal of Geographical Information Science, Vol. 29(4), pp. 643–666.10.1080/13658816.2014.995102 Search in Google Scholar

Kuna, M. (2004) Nedestruktivní archeologie: Teorie, metody a cíle. Prague: Academia. Search in Google Scholar

Kuna, M. (2006) Burial mounds in the landscape. In: L. Šmejda, ed. Archaeology of Burial Mounds. Plzeň: Dryada, pp. 83–97. Search in Google Scholar

Kuna, M. – Danielisová, A. (2009) Geomorfometrie a analýza reliéfu v archeologii. Živá archeologie, Vol. 10, pp. 56–60. Search in Google Scholar

Kuna, M. – Novák, D. – Bucha Rašová, A. – Bucha, B. – Machová, B. – Havlice, J. – John, J. – Chvojka, O. (2022) Total views-hed in archaeology: problem solved, issues remain. Journal of Archaeological Science, Vol. 142, pp. 105596.10.1016/j.jas.2022.105596 Search in Google Scholar

Llobera, M. (2003) Extending GIS-based visual analysis: the concept of visualscapes. International Journal of Geographical Information Science, Vol. 17, pp. 25–48.10.1080/713811741 Search in Google Scholar

Llobera, M. (2007) Reconstructing visual landscapes. World Archaeology, Vol. 39, pp. 51–69.10.1080/00438240601136496 Search in Google Scholar

Minár, J. – Evans, I.S. – Jenčo, M. (2020) A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction. Earth-Science Reviews, Vol. 211, pp. 103414.10.1016/j.earscirev.2020.103414 Search in Google Scholar

Novák, D. (2018) Wykorzystanie ALS do zautomatyzowanej analizy krajobrazu. In: M. Gojda, Z. Kobyliński, eds. Lotnicze skanowanie laserowe jako narzędzie archeologii. Archaeologica Hereditas, 11. Warszawa: Instytut Archeologii Uniwersytetu Kardynała Stefana Wyszyńskiego w Warszawie, pp. 69–84 [in Polish]. Search in Google Scholar

Novák, D. (2019) Funkční klasifikace a vývoj vrchnostenských sídel ve středověkých a raně novověkých Čechách. Památky archeologické, Vol. 110, pp. 307–382. Search in Google Scholar

Posluschny, A.G. (ed.) (2015) Sensing the Past: Contributions from the ArcLand Conference on Remote Sensing for Archaeology. Bonn: Habelt-Verlag. Search in Google Scholar

Rášová, A. (2017) Substanciálna analýza viditeľnosti v prostredí GIS. Unpublished thesis (PhD), Slovak University of Technology in Bratislava [in Slovak]. Search in Google Scholar

Romstad, B. – Etzelmüller, B. (2012) Mean-curvature watersheds: A simple method for segmentation of a digital elevation model into terrain units. Geomorphology, Vol. 139-140, pp. 293–302.10.1016/j.geomorph.2011.10.031 Search in Google Scholar

Schmidt, J. – Werther, L. – Zielhofer C. (2018) Shaping pre-modern digital terrain models: The former topography at Charlemagne’s canal construction site. PLoS ONE, Vol. 13(7), pp. e0200167.10.1371/journal.pone.0200167603344729975746 Search in Google Scholar

Tarboton, D.G. – Schreuders, K.A.T. – Watson, D.W. – Baker, M.E. (2009) Generalized terrain-based flow analysis of digital elevation models. In: R.S. Anderssen, R.D. Braddock, and L.T.H. Newham, eds. 18th World IMACS Congress and MODSIM09 International Congress on Modelling and Simulation. Christchurch: Modelling and Simulation Society of Australia and New Zealand, pp. 2000–2006. Search in Google Scholar

Werbrouck, I. – Antrop, M. – Van Eetvelde, V. – Stal, C. – De Maeyer, Ph. – Bats, M. – Bourgeois, J. – Court-Picon, M. – Crombe, Ph. – De Reu, J. – De Smedt, Ph. – Finke, P.A. – Van Meirvenne, M. – Verniers, J. – Zwertvaegher, A. (2011) Digital Elevation Model generation for historical landscape analysis based on LiDAR data, a case study in Flanders (Belgium). Expert Systems with Applications, Vol. 38(7), pp. 8178–8185.10.1016/j.eswa.2010.12.162 Search in Google Scholar

Zwertvaegher, A. – Finke, P. – De Reu, J. – Vandenbohede, A. – Lebbe, L. – Bats, M. – De Clercq, W. – De Smedt, P. – Gelorini, V. – Sergant, J. – Antrop, M. – Bourgeois, J. – De Maeyer, P. – Van Meirvenne, M. – Verniers, J. – Crombé, P. (2013) Reconstructing Phreatic Palaeogroundwater Levels in a Geoarchaeological Context: A Case Study in Flanders, Belgium. Geoarchaeology, 28, 170–189.10.1002/gea.21435 Search in Google Scholar

Zwertvaegher, A. – Werbrouck, I. – Finke, P.A. – De Reu, J. – Crombé, P. – Bats, M. – Antrop, M. – Bourgeois, J. – Court-Picon, M. – De Maeyer, P. – De Smedt, P. – Sergant, J. – Van Meirvenne, M. – Verniers, J. (2010) On the use of integrated process models to reconstruct prehistoric occupation, with examples from Sandy Flanders, Belgium. Geoarchaeology, Vol. 25, pp. 784–814.10.1002/gea.20332 Search in Google Scholar

eISSN:
1338-3973
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other