[
1. Yazıcı, A. M., and Darıcı, S. The New Opportunities in Space Economy. Journal of the Human and Social Science Research 8(4), 2019, pp. 3252-3271.10.15869/itobiad.615134
]Search in Google Scholar
[
2. Yazıcı, A. M., and Tiwari, S. Space Tourism: An Initiative Pushing Limits. Journal of Tourism, Leisure and Hospitality 3(1), 2021, pp. 38-46.10.48119/toleho.862636
]Search in Google Scholar
[
3. NASA. NASA’s Perseverance Mars Rover Extracts First Oxygen from Red Planet. 2021, https://www.nasa.gov/press-release/nasa-s-perseverance-mars-roverextracts-first-oxygen-from-red-planet
]Search in Google Scholar
[
4. NASA. NASA’s Ingenuity Mars Helikopter Logs Second Successful Flight. 2021, https://www.nasa.gov/feature/jpl/nasa-s-ingenuity-mars-helicopter-logssecond-successful-flight
]Search in Google Scholar
[
5. Mann, A. Crewed launch deepens ties between NASA and SpaceX. Science 368, 2020, pp. 811-812.10.1126/science.368.6493.81132439772
]Search in Google Scholar
[
6. Yazıcı, A. M. An Investigation on The Economic Feasibility of Space Elevator. Journal of Aviation and Aerospace Studies 1(1), 2020, pp. 33-47.
]Search in Google Scholar
[
7. Musk, E. Making life multi-planetary. New Space 6(1), 2018, pp. 2-11.10.1089/space.2018.29013.emu
]Search in Google Scholar
[
8. Szocik, K. Should and could humans go to Mars? Yes, but now and not in the near future. Futures 105, 2019, pp. 54-66.10.1016/j.futures.2018.08.004
]Search in Google Scholar
[
9. Sagan C. Pale Blue Dot: A Vision of the Human Future in Space. Ballantine Books, 1997.
]Search in Google Scholar
[
10. Turchin, A., and Green, B. P. Aquatic refuges for surviving a global catastrophe. Futures 89, 2017, pp. 26-37.10.1016/j.futures.2017.03.010
]Search in Google Scholar
[
11. Baum, S. D., Denkenberger, D. C., and Haqq-Misra, J. Isolated refuges for surviving global catastrophes. Futures 72, 2015, pp. 45-56.10.1016/j.futures.2015.03.009
]Search in Google Scholar
[
12. Shapiro, R. A new rationale for returning to the Moon?, Protecting civilization with a sanctuary. Space Policy 25, 2009, pp. 1-5.10.1016/j.spacepol.2008.12.002
]Search in Google Scholar
[
13. Zeitlin, C., Hassler, D. M., Cucinotta, F. A., Ehresmann, B., Wimmer-Schweingruber, R. F., Brinza, D. E., Kang, S., Weigle, G., Böttchers, S., Böhm, E., Burmeister, S., Guo, J., Köhler, J., Martin, C., Posner, A., Rafkin, S., and Reitz, G. Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory. Science 340:1080, 2013.10.1126/science.123598923723233
]Search in Google Scholar
[
14. Petrov, G. I. A Permanent Settlement on Mars: The First Cut in The Land of a New Frontier. Master of Architecture at the Massachusetts Institute of Technology, 2004.
]Search in Google Scholar
[
15. NASA. Follow NASA’s Perseverance Rover in Real Time on Its Way to Mars. 2020, Nasa.gov/feature/jpl/follow-nasas-perseverance-rover-in-realtime-on-its-way-to-mars
]Search in Google Scholar
[
16. Amiri, H. E. S., Brain, D., Sharaf, O., Withnell, P., McGrath, M., Alloghani, M., and Al Awadhi, M. The emirates Mars mission. Space Science Reviews 218, 1, 2022, pp. 1-46.10.1007/s11214-021-00868-x883099335194256
]Search in Google Scholar
[
17. Mallapaty, S. China’s successful launch of Mars mission seals global era in deep-space exploration. Nature 583:671, 2020.10.1038/d41586-020-02187-732704102
]Search in Google Scholar
[
18. Knutsen, E. W., Villanueva, G. L., Liuzzi, G., Crismani, M. M. J., Mumma, M. J., Smith, M. D., Vandaele, A. C., Aoki, S., Thomas, I. R., Daerden, F., Viscardy, S., Erwin, J. T., Trompet, L., Neary, L., Ristic, B., Lopez-Valverde, M. A., Lopez-Moreno, J. J., Patel, M. R., Karatekin, O., and Bellucci, G. Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus 357:114266, 2021.10.1016/j.icarus.2020.114266
]Search in Google Scholar
[
19. Levchenko, I., Xu, S., Mazouffre, S., Keidar, M., and Bazaka, K. Mars Colonization: Beyond Getting There. Global Challenges 3, 2019, pp. 1-11.10.1002/gch2.201800062638396431565356
]Search in Google Scholar
[
20. Szocik, K., Abood, S., Impey, C., Shelhamer, M., Haqq-Misra, J., Persson, E., Oviedo, L., Capova, K. A., Braddock, M., Rappaport, M. B., and Corbally, C. Visions of a Martian future. Futures 117:102514, 2020.10.1016/j.futures.2020.102514
]Search in Google Scholar
[
21. Doo-Hwan, K. Proposal of Establishing a New International Space Agency for Mining the Natural Resources in the Moon, Mars and Other Celestial Bodies. The Korean Journal of Air & Space Law and Policy 35(12), 2020, pp. 313-374.10.31691/KASL35.2.11.
]Search in Google Scholar
[
22. Stoner, I. Humans Should Not Colonize Mars. Journal of the American Philosophical Association 3(3), 2017, pp. 334-353.10.1017/apa.2017.26
]Search in Google Scholar
[
23. Orwig, J. 5 undeniable reasons humans need to colonize Mars- even though it’s going to cost billions. 2015, https://www.businessinsider.com/5-undeniable-reasons-why-humansshould-go-to-mars-2015-4
]Search in Google Scholar
[
24. NASA. NASA’s Journet to Mars Pioneering Next Steps in Space Exploration. 2015, nasa.gov/sites/default/files/journey-to-mars-next-steps-20151008_508.pdf.
]Search in Google Scholar
[
25. Greenblatt, J., and Anzaldua, A. How space technology benefits the Earth. Space Review. 2019, https://www.thespacereview.com/article/3768/1
]Search in Google Scholar
[
26. Pyne, S. J. Seeking Newer Worlds: The Future of Exploration. 2003, https://faculty.washington.edu/mccurdy/SciencePolicy/Pyne%20New%20Worlds.pdf
]Search in Google Scholar
[
27. Sirivolu, S. A Constitutional Political Economy Perspective On The Colonization Of Mars. University of Pennsylvania Scholarly Commons. Philosophy Politics and Economics. Honors Theses (PPE) 22, 2016.
]Search in Google Scholar
[
28. Linck, E., Crane, K. W., Zuckerman, B. L., Corbin, B. A., Myers, R. M., Williams, S. R., Carioscia, S. A., Garcia, R., and Lal, B. Evaluation of a Human Mission to Mars by 2033. IDA Science & Technology Policy Institute, 2019.
]Search in Google Scholar
[
29. Wójtowicz, T., and Szocik, K. Democracy or What? Political system on the planet Mars after its colonization. Techological Forecasting and Social Change 166, 2021, pp. 1-6.10.1016/j.techfore.2021.120619
]Search in Google Scholar
[
30. Strickland, J. Why a business case for Mars settlement is not required. The Space Review. 2020, https://www.thespacereview.com/article/3908/1
]Search in Google Scholar
[
31. Zubrin, R. Why We Earthling Should Colonize Mars!. Theology and Science 17(3), 2019, pp. 305-316.10.1080/14746700.2019.1632519
]Search in Google Scholar
[
32. Zubrin, R. The Case For Mars. New York: Free Press, 2021.
]Search in Google Scholar
[
33. Knappenberger, C. An Economic Analysis of Mars Exploration and Colonization. Student research 28, 2015.
]Search in Google Scholar
[
34. Llorente, B. How to grow crops on Mars if we are to live on the red planet. The Conversation. 2018, theconversation.com/how-to-grow-crops-on-mars-if-we-are-to-live-on-the-red-planet-99943.
]Search in Google Scholar
[
35. Cannon, K. M., Britt, D. T. Feeding on million people on Mars. New Space 7(4), 2019, pp. 245-254.10.1089/space.2019.0018
]Search in Google Scholar
[
36. Nangle, S. N., Wolfson, M. Y., Hartsough, L., Ma, N. J., Mason, C. E., Merighi, M., Nathan, V., Silver, P. A., Simon, M., Swett, J., Thompson, D. B., and Ziesack, M. The case for biotech on Mars. Nature Biotechnology 38, 2020, pp. 401-407.10.1038/s41587-020-0485-432265561
]Search in Google Scholar
[
37. Menezes, A. A., Cumbers, J., Hogan, J. A., and Arkin, A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 12:20140715, 2015.10.1098/rsif.2014.0715427707325376875
]Search in Google Scholar
[
38. Granath, B. Lunar Martian Greenhouses Designed to Mimic Those on Earth. NASA. 2017, nasa.gov/feature/lunar-martian-greenhouses-designed-to-mimic-those-on-earth.
]Search in Google Scholar
[
39. Llorente, B., Williams, T. C., and Goold, H. D. The Multiplanetary Future of Plant Synthetic Biology. Genes 9:348, 2018.10.3390/genes9070348607103129996548
]Search in Google Scholar
[
40. Haseloff, J., and Ajioka, J. Synhetic biology: history, challenges and prospects. J. R. Soc. Interface 6, 2009, pp. 389-391.10.1098/rsif.2009.0176.focus284396419493895
]Search in Google Scholar
[
41. Bruhns, S., and Haqq-Misra, J. A Pragmatic approach to sovereignty on Mars. Space Policy 38, 2016, pp. 57-63.10.1016/j.spacepol.2016.05.008
]Search in Google Scholar
[
42. Klein, E. Here’s the unusual way Elon Musk would make laws on Mars. Vox. 2016, https://www.vox.com/2016/6/2/11837770/heres-the-unusual-way-elon-musk-would-make-laws-on-mars
]Search in Google Scholar
[
43. Tosun, C., and Keskin, F. Teknokratik Teori: Tarihsel perspektifte temel temalar. Verimlilik Dergisi 1, 2013, pp. 107-122.
]Search in Google Scholar
[
44. Kim, C. H., and Choi, Y. B. How Meritocracy is Defined Today?: Contemporary Aspects of Meritocracy. Economics and Sociology 10(1), 2017, pp. 112-121.10.14254/2071-789X.2017/10-1/8
]Search in Google Scholar
[
45. Szocik, K., Marques, R. E., Abood, S., Kedzior, A., Lysenko-Ryba, K., and Minich, D. Biological and social challenges of human reproduction in a long-term Mars base. Futures 100, 2018, pp. 56-62.10.1016/j.futures.2018.04.006
]Search in Google Scholar
[
46. Freese, S., Reddy, A. P., and Lehnhardt, K. Radiation Impacts on Human Health During Spaceflight Beyond Low Earth Orbit. REACH 2-4, 2016, pp. 1-7.10.1016/j.reach.2016.11.002
]Search in Google Scholar
[
47. NASA. Rodent Research. 2017, https://www.nasa.gov/ames/rodent-research
]Search in Google Scholar
[
48. Andreev-Andrievskiy, A., Popova, A., Boyle, R., Alberts, J., Shenkman, B., Vinogradova, O., Dolgov, O., Anokhin, K., Tsvirkun, D., Soldatov, P., Nemirovskaya, T., llyin, E., and Sychev, V. Mice in Bion-M 1 Space Mission: Training and Selection. PLoS ONE 9(8):e104830, 2014.
]Search in Google Scholar
[
49. Sandonà, D., Desaphy, J. F., Camerino, G. M., Bianchini, E., Ciciliot, S., Danieli-Betto, D., Dobrowolny, G., Furlan, S., Germinario, E., Goto, K., Gutsmann, M., Kawano, F., Nakai, N., Ohira, T., Ohno, Y., Picard, A., Salanova, M., Schiffl, G., Blottner, D., Musarò, A., Ohira, Y., Betto, R., Conte, D., and Schiaffino, S. Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission. PLoS ONE 7(3):e33232, 2012.10.1371/journal.pone.0033232331465922470446
]Search in Google Scholar
[
50. Matsumura, T., Noda, T., Muratani, M., Okada, R., Yamane, M., Isotani, A., Kudo, T., Takahashi, S., and Ikawa, M. Male mice, caged in the International Space Station for 35 days, sire healthy offspring. Scientific Reports 9:13733, 2019.10.1038/s41598-019-50128-w676020331551430
]Search in Google Scholar
[
51. Wakayama, S., Kamada, Y., Yamanaka, K., Kohda, T., Suzuki, H., Shimazu, T., Tada, M. N., Osada, I., Nagamatsu, A., Kamimura, S., Nagatomo, H., Mizutani, E., Ishino, F., Yano, S., and Wakayama, T. Healthy offspring from freeze-dried mouse spermatozoa held on the International Space Station for 9 months. PNAS 114:23, 2017.10.1073/pnas.1701425114546861428533361
]Search in Google Scholar