1. bookVolume 11 (2022): Issue 1 (March 2022)
Journal Details
First Published
03 Oct 2014
Publication timeframe
4 times per year
access type Open Access

Sustaining Resources for Homo Martis: The Potential Application of Synthetic Biology for the Settlement of Mars

Published Online: 05 Apr 2022
Page range: 1 - 16
Journal Details
First Published
03 Oct 2014
Publication timeframe
4 times per year

The recent success of the Mars 2020 project and the high quality images relayed back to Earth have provided further impetus and expectations for human missions to Mars. To support space agency and private enterprise plans to establish a sustainable colony on Mars in the 2030s, synthetic biology may play a vital role to enable astronaut self-sufficiency. In this review, we describe some aspects of where synthetic biology may inform and guide in situ resource utilisation strategies. We address the nature of Martian regolith and describe methods by which it may be rendered fit for purpose to support growth and yield of bioengineered crops. Lastly, we illustrate some examples of innate human adaptation which may confer characteristics desirable in the selection of colonists and with a future looking lens, offer potential targets for human enhancement.


1. Duffy, D. Elon Musk says SpaceX will get humans to Mars in 2026. https://www.businessinsider.co.za/elon-musk-spacex-starship-humans-mars-mission-2026-experts-question-2021-2. Accessed 11th May 2021. Search in Google Scholar

2. Mars One Roadmap. https://www.mars-one.com/mission/roadmap. Accessed 11th May 2021. Search in Google Scholar

3. How Investing in the Moon Prepares NASA for First Human Mission to Mars. https://www.nasa.gov/sites/default/files/atoms/files/moon-investments-prepare-us-for-mars.pdf. Accessed 1th May 2021. Search in Google Scholar

4. Braddock, M, Wilhelm, CP, Romain, A, Bale L, Szocik, K. Application of socio-technical systems models to Martian colonisation and society build. Theoret. Issues Ergonomics Sci. 21, 2019, pp.131-152.10.1080/1463922X.2019.1658242 Search in Google Scholar

5. Vincente, K.J. Cognitive work analysis: towards safe, productive and health computer-based work. CRC press, 1999. Search in Google Scholar

6. Naikar, N. Work domain analysis: concepts, guidelines and cases. CRC press, 2013. Search in Google Scholar

7. Cooper, M., Douglas, D. & Perchonok, M. Developing the NASA food system for long-duration missions. J. Food Sci. 76, 2011, R40-R48.10.1111/j.1750-3841.2010.01982.x Search in Google Scholar

8. Verseux, C., Lima, I.G.P., Baque, M., Rothschild, M. Synthetic Biology for Space Exploration: Promises and Societal Implications. In: Ambivalences of Creating Life. Societal and Philosophical Dimensions of Synthetic Biology. Hagen, K., Engelhard, M., Toepfer (eds.), Springer-Verlag publishers, 2016, pp. 73-100. Search in Google Scholar

9. Ishimatsu, T., Grogan, P., de Weck, O. Interplanetary Trajectory Analysis and Logistical Considerations of Human Mars Exploration J. Cosmol. 12, 2010, pp, 3588-3600. Search in Google Scholar

10. Ogawa, N., Haruki, M., Kondoh, Y. et al. Orbit plan and mission design for Mars EDL and surface exploration technologies demonstrator. Trans. JSASS Aerospace Tech. 14, 2016, pp. 9-15.10.2322/tastj.14.Pk_9 Search in Google Scholar

11. Hohmann, W. The Attainability of Heavenly Bodies. In: NASA Technical Translation, F-44, 1960. Search in Google Scholar

12. Jones, H.W. The recent large reduction in space launch cost. In: 48th International Conference on Environmental Systems, 2018, CES-2018-81, pp. 1-10. Search in Google Scholar

13. Roberts, T.G. Space Launch to Low Earth Orbit: How Much Does It Cost? Civil and Commercial Space Space Security, 2020 https://aerospace.csis.org/data/space-launch-to-low-earth-orbit-how-much-does-it-cost/, accessed 28th April 2021. Search in Google Scholar

14. World population projections. https://www.worldometers.info/world-population/world-population-projections/. Accessed 11th May 2021. Search in Google Scholar

15. Eydelman, A. Temperature on the surface of Mars. The Physics Factbook. Elert, G. (ed.), 2001. Search in Google Scholar

16. Mars facts, NASA (2013). https://web.archive.org/web/20130607140708/http:/quest.nasa.gov/aero/planetary/mars.html. Accessed April 28th 2021. Search in Google Scholar

17. Mars fact sheet, NASA (2018). https://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html. Accessed May 10th 2021. Search in Google Scholar

18. Matthiä, D. et al. The radiation environment on the surface of Mars – Summary of model calculations and comparison to RAD data. Life Sci. Space Res., 14, 2017, pp. 18-28.10.1016/j.lssr.2017.06.003 Search in Google Scholar

19. Bloshenko, A.D., Robinson, J.M., Colon, R.A., Anchordoqui, L.A. Health threat from cosmic radiation during manned missions to Mars. arXiv:2012.09604v1. Search in Google Scholar

20. Paris, J., Davis, E.T., Tognetti, L., Zahniser, C. Prospective Lava Tubes at Hellas Planitia, J. Wash. Acad. Sci. 2004.13156, 2019. Search in Google Scholar

21. Voroney, R.P., Heck, R. J. The soil habitat. In: Soil microbiology, ecology and biochemistry (3rd ed.). Eldor, P.A. (ed.). Amsterdam, the Netherlands: Elsevier publishers. 2007, pp. 25–49.10.1016/B978-0-08-047514-1.50006-8 Search in Google Scholar

22. Needelman, B. A. What Are Soils? Nature Education Knowledge 4, 2013, 2. Search in Google Scholar

23. Kalev, S.D., Toor, G.S. Chapter 3.9 - The Composition of soils and sediments. In: Green Chemistry. Torok, B., Dransfield, T. (eds.) Elsevier publishers, 2018, pp. 339-357.10.1016/B978-0-12-809270-5.00014-5 Search in Google Scholar

24. McSween, H.Y., Taylor, G.J., Wyatt, M.B. Elemental Composition of the Martian Crust. Science, 324, 2009, pp. 736-739.10.1126/science.1165871 Search in Google Scholar

25. Cousin, A., Meslin, P.Y., Wiens, R.C. et al. Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils. Icarus, 249, 2015, pp.22-42.10.1016/j.icarus.2014.04.052 Search in Google Scholar

26. Ming, D. W., Morris, R. V. Dust in the Atmosphere of Mars and Its Impact on Human Exploration. In: Proceedings of the LPI, contribution No. 1966, 2017, id.6027. Search in Google Scholar

27. Bohle, S., Montaño, H.S.P., Bille, M., Turnbull, D. Evolution of soil on Mars. Astron. & Geophys., 57, 2016, pp. 2.18– Search in Google Scholar

28. Ramkissoon, N.K., Pearson, V.K., Schwenzer, S.P. et al. New simulants for Martian regolith: Controlling iron variability. Planetary Space. Sci., 179, 2019, 104722.10.1016/j.pss.2019.104722 Search in Google Scholar

29. Braddock, M. Mission to Mars: Countdown to Building a Brave New World – Laying the Foundations. In: Yearbook of Astronomy. Jones, B. (ed.), White Owl publishers 2022, In press. Search in Google Scholar

30. Hecht, M. H., Kounaves, S.P., Quinn, R.C. et al. Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix Lander Site. Science 325, 2009, pp. 64–67.10.1126/science.1172466 Search in Google Scholar

31. Davila, A.F., Willson, D., Coates, J.D. & McKay, C.P. Perchlorate on Mars: a chemical hazard and a resource for humans. Int. J. Astrobiol. 12, 2013, pp 321-325.10.1017/S1473550413000189 Search in Google Scholar

32. Glavin, D., Grotzinger, J.P. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater. J. Geophys. Res. Planets 118, 2013, pp.1955–1973.10.1002/jgre.20144 Search in Google Scholar

33. Niziński P, Błażewicz A, Kończyk J, Michalski R. Perchlorate - properties, toxicity and human health effects: an updated review. Rev. Environ. Health. 2020, doi: 10.1515/reveh-2020-0006.10.1515/reveh-2020-0006 Search in Google Scholar

34. He, H., Gao, H. Chen, G. et al. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues. Environ. Sci. Poll. Res. Int. 20, 2013, pp. 7301-7308.10.1007/s11356-013-1744-4 Search in Google Scholar

35. Wadsworth, J., Cockell, C.S. Perchlorates on Mars enhance the bacteriocidal effects of UV light. Sci. Rep. 7, 2017, 4662. Search in Google Scholar

36. Carrier, B.L. Kounaves, S.P. The origins of perchlorate in the Martian soil. Geophys. Res. Lett. 42, 2015, pp. 3739–3745.10.1002/2015GL064290 Search in Google Scholar

37. Race, M.S., Moses, J., McKay, C., Venkateswaran, K.J. Synthetic biology in space: considering the broad societal and ethical implications. Int. J. Astrobiol. 11, 2012, pp. 133-139.10.1017/S1473550412000018 Search in Google Scholar

38. Menezes, A.A., Montague, M.G., Cumbers, J., Hogan, J.A., Arkin, A.P. Grand challenges in space synthetic biology. J. R. Soc. Interface 12, 2015, 20150803.10.1098/rsif.2015.0803 Search in Google Scholar

39. Llorente, B., Williams, T.C., Goold, H.D. The multiplanetary future of plant synthetic biology. Genes, 9, 2018, 348.10.3390/genes9070348 Search in Google Scholar

40. McNulty, M.J., Xiong, Y., Yates, K. et al. Molecular pharming to support human life on the moon, Mars, and beyond. Preprints 2020, 2020090086.10.20944/preprints202009.0086.v1 Search in Google Scholar

41. Nangle, S.N., Wolfson, M.Y., Hartsough, L. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 2020, pp. 401–407.10.1038/s41587-020-0485-4 Search in Google Scholar

42. Patel, Z.S., Brunstetter, T.J., Tarver, W.J. Red risks for a journey to the red planet: the highest priority human health risks for a mission to Mars. npj Microgravity 6, 2020, 33.10.1038/s41526-020-00124-6 Search in Google Scholar

43. Duncan, P.B., Morrison, R.D., Vavricka, E. Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environ. Forensics. 6, 2005, pp.205–215.10.1080/15275920590952883 Search in Google Scholar

44. Cole-Dai, J., Peterson, K.M., Kennedy, J.A., Cox, T.S., Ferris, D.G. Evidence of influence of human activities and volcanic eruptions on environmental perchlorate from a 300-year Greenland ice core record. Environmental Science & Technology, 52, 2018, pp. 8373–8380.10.1021/acs.est.8b01890 Search in Google Scholar

45. Acevedo-Barrios, R., Sabater-Marco, C., Olivero-Verbel, J. Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25, 2018, pp. 13697–13708.10.1007/s11356-018-1565-6 Search in Google Scholar

46. Maffini, M.V., Trasande, L., Neltner, T.G. Perchlorate and diet: human exposures, risks, and mitigation strategies. Current Environmental Health Reports, 3, 2016 pp. 107–117.10.1007/s40572-016-0090-3 Search in Google Scholar

47. Smith, P.N. In: The Ecotoxicology of Perchlorate in the Environment BT-Perchlorate: Environmental Occurrence, Interactions and Treatment, Gu, B and Coates, J.D. (eds.), Boston, USA, Springer publishers 2006. Search in Google Scholar

48. Knight, B.A., Shields, B.M., He, X. et al. Effect of perchlorate and thiocyanate exposure on thyroid function of pregnant women from South-West England: a cohort study. Thyroid Res., 11, 2018, 9.10.1186/s13044-018-0053-x Search in Google Scholar

49. Steinmaus, C., Pearl, M., Kharrazi, M. et al. Thyroid hormones and moderate exposure to perchlorate during pregnancy in women in southern California. Environ. Health Perspect., 124, 2016, pp. 861–867.10.1289/ehp.1409614 Search in Google Scholar

50. Srinivasan, A., Viraraghavan, T. Perchlorate: health effects and technologies for its removal from water resources. Int. J. Environ. Res. Public Health 6, 2009, pp 1418-1442.10.3390/ijerph6041418 Search in Google Scholar

51. Orris, G.J., Harvey, G.J., Tsui, D.T., Eldrige, J.E. Preliminary analyses for perchlorate in selected natural materials and their derivative products. USGS, 2003. https://www.fws.gov/uploadedFiles/AR%200025%202003%20Preliminary%20analyses%20for%20perchlorate%20in%20selected%20natural%20materials%20and%20their%20derivative%20products.pdf accessed on 10th May 2021. Search in Google Scholar

52. Wang, O., Coates, J.D. Biotechnological Applications of Microbial (Per)chlorate Reduction. Microorganisms. 5, 2017, pp, 76.10.3390/microorganisms5040076 Search in Google Scholar

53. Arkin, A. A Synthetic Biology Architecture to Detoxify and Enrich Mars Soil for Agriculture, 2017. https://www.nasa.gov/directorates/spacetech/niac/2017_Phase_I_Phase_II/Mars_Soil_Agriculture/. Accessed on April 27th 2021. Search in Google Scholar

54. Venturelli, O S; Egbert, R G; Arkin, A P. Towards engineering biological systems in a broader context. J. Mol. Biol., 428, 2016, pp. 928–944.10.1016/j.jmb.2015.10.025 Search in Google Scholar

55. Enrichment of Martian regolith to useful agricultural soil. https://cubes.space/divisions/mmfd. Accessed May 11th 2021. Search in Google Scholar

56. Orosei, R., Lauro, S.E., Pettinelli, E. et al. Radar evidence for subglacial liquid water on Mars. Science, 361, 2018, pp. 490-493.10.1126/science.aar7268 Search in Google Scholar

57. Nazari-Sharavian, M., Aghababaei, M., Karakouzian, M., Karami, M. Water on Mars – a literature review. Galaxies 8, 2020, 40.10.3390/galaxies8020040 Search in Google Scholar

58. Joseph, R., Gibson, C.H., Schild, R. Water, ice, mud in the Gale crater: implications for life on Mars. J. Cosmol. 29, 2020, pp. 1-33. Search in Google Scholar

59. Scheller, E.L., Ehlmann, B.L., Hu, R., Adams, D.J., Yung, Y.L. Long-term drying of Mars by sequestration of ocean-scale volumes of water in the crust. Science, 372, 2021, pp. 56-62.10.1126/science.abc7717 Search in Google Scholar

60. Rosa, L. et al. Global agricultural economic water scarcity. Science Advances 6, 2020, eaaz6031.10.1126/sciadv.aaz6031 Search in Google Scholar

61. Mekonnen, M.M., Gerbens-Leenes, W. The water footprint of global food production. Water 12, 2020, 2696.10.3390/w12102696 Search in Google Scholar

62. Yang, X., Cushman, J.C., Borland, A.M., Liu, Q. Editorial: Systems Biology and Synthetic Biology in Relation to Drought Tolerance or Avoidance in Plants. Front. Plant Sci. 11, 2020, 394.10.3389/fpls.2020.00394 Search in Google Scholar

63. Głowacka, K., Kromdijk, J., Kucera, K. et al. Photosystem II Subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat. Commun. 9, 2018, 868.10.1038/s41467-018-03231-x Search in Google Scholar

64. Park, S.-Y. et al. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature, 520, 2015, pp. 545-548.10.1038/nature14123 Search in Google Scholar

65. Sanghera, G.S., Wani, S.H., Hussain, W., Singh, N.N. Engineering cold stress tolerance in crop plants. Curr. Genomics 12, 2011, pp. 30-43.10.2174/138920211794520178 Search in Google Scholar

66. Wisniewski, M., Nassuth, A., Arora, R. (2018). Cold hardiness in trees: a mini-review. Front. Plant Sci. 9, 2018, 1394. Search in Google Scholar

67. Joshi R., Singh, B., Chinnusamy, V. Genetically Engineering Cold Stress-Tolerant Crops: Approaches and Challenges. In: Cold Tolerance in Plants, Wani S., Herath V. (eds). Springer, Cham. 2020, pp. 179-195.10.1007/978-3-030-01415-5_10 Search in Google Scholar

68. Singh, A,, Grover, A. Genetic engineering for heat tolerance in plants. Physiol. Mol. Biol. Plants. 14, 2008, pp. 155-166.10.1007/s12298-008-0014-2 Search in Google Scholar

69. Jia, Y., Ding, Y., Shi Y. et al. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytol. 212, 2016, pp. 345–353.10.1111/nph.14088 Search in Google Scholar

70. Zhao C., Zhang Z., Xie S., Si T., Li Y., Zhu J. K. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant Physiol. 171, 2016, pp. 2744–2759.10.1104/pp.16.00533 Search in Google Scholar

71. Kumar SR, Kiruba R, Balamurugan S, Cardoso HG, Birgit A-S, et al. Carrot antifreeze protein enhances chilling tolerance in transgenic tomato. Acta Physiologiae Plantarum, 36, 2014, pp. 21-27.10.1007/s11738-013-1383-x Search in Google Scholar

72. Zaidi, S.SeA., Mahas, A., Vanderschuren, H. et al. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 21, 2020, 289.10.1186/s13059-020-02204-y Search in Google Scholar

73. Bouis, H. E., Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Sec.12, 2017, pp.49-58.10.1016/j.gfs.2017.01.009 Search in Google Scholar

74. Bhullar, N.K. Gruissem, W. Nutritional enhancement of rice for human health: the contribution of biotechnology. Biotechnol. Adv. 31, 2013, pp. 50-57.10.1016/j.biotechadv.2012.02.001 Search in Google Scholar

75. Ye, X., Al-Babili, S., Klöti, A. et al. Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 2000, pp. 303–305.10.1126/science.287.5451.303 Search in Google Scholar

76. Paine, J.A., Shipton, C.A., Chaggar, S. et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 2005, pp. 482–487.10.1038/nbt1082 Search in Google Scholar

77. Datta, S.K., Datta, K., Parkhi, V. et al. Golden rice: introgression, breeding, and field evaluation. Euphytica, 154, 2007, pp. 271–278.10.1007/s10681-006-9311-4 Search in Google Scholar

78. Tang, G., Qin, J., Dolnikowski, G.G., Russell, R.M., Grusak, M.A. Golden rice is an effective source of vitamin A. Am. J. Clin. Nutr. 89, 2009, pp. 1776–1783.10.3945/ajcn.2008.27119 Search in Google Scholar

79. New Plant Variety Consultation: FDA (2018). https://www.cfsanappsexternal.fda.gov/scripts/fdcc/index.cfm?set=NewPlantVarietyConsultations. Accessed December 12th 2020. Search in Google Scholar

80. Provitamin A Biofortified Rice Event GR2E (Golden Rice): Health Canada (2018).https://www.canada.ca/en/health-canada/services/food-nutrition/genetically-modified-foods-other-novel-foods/approved-products/golden-rice-gr2e.html. Accessed 28th April 2021. Search in Google Scholar

81. Sautter, C., Poletti, S., Zhang, P., Gruissem, W. Biofortification of essential nutritional compounds and trace elements in rice and cassava. Proc. Nutr. Soc. 65, 2006, pp. 153–159.10.1079/PNS2006488 Search in Google Scholar

82. Diretto G, Al-Babili S, Tavazza R. et al. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2, 2007, e350.10.1371/journal.pone.0000350 Search in Google Scholar

83. Díaz de la Garza, R.I., Gregory III, G.F., Hanson, A.D. Folate biofortification of tomato fruit. Proc. Natl. Acad. Sci. USA, 104, 2007, pp. 4218-4222.10.1073/pnas.0700409104 Search in Google Scholar

84. Narayanan, N., Beyene, G., Chauhan R.,D. et al. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37, 2019, pp. 144-151.10.1038/s41587-018-0002-1 Search in Google Scholar

85. Connor, M.R., Atsumi, S. Synthetic biology guide biofuel production. BioMed Res. Int. 2010, 2010, 54169810.1155/2010/541698 Search in Google Scholar

86. Khatib, S.E., Yassine, N.A. Advances in Synthetic Biology and Metabolic Engineering in the Production of Biofuel. Int. J. Curr. Microbiol. App. Sci., 8, 2019, pp. 1762-1772.10.20546/ijcmas.2019.809.204 Search in Google Scholar

87. Mortimer JC. Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine. 244, 2019, pp,323-331.10.1177/1535370218793890 Search in Google Scholar

88. Verseux, C. et al. Sustainable life support on Mars – the potential roles of cyanobacteria. Int. J. Astrobiol. 15, 2016, pp. 65-92.10.1017/S147355041500021X Search in Google Scholar

89. Getting there and back. In: Human missions to Mars. Springer Praxis Books. Springer, Berlin, Heidelberg, 2008. Search in Google Scholar

90. Merino, N., Aronson, H.S., Bojanova, D.P. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol., 10, 2019, 780.10.3389/fmicb.2019.00780 Search in Google Scholar

91. Schröder, C., Burkhardt, C. & Antranikian, G. What we learn from extremophiles. ChemTexts 2020, 6, 8.10.1007/s40828-020-0103-6 Search in Google Scholar

92. Ginsburg, I., Lingam, M., Loeb, A. Galactic panspermia. Astrophys. J. Lett., 868, 2018, L12.10.3847/2041-8213/aaef2d Search in Google Scholar

93. Wassmann, M., Moeller, R., Rabbow, E. et al. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated Martian conditions: data from the space experiment ADAPT on EXPOSE-E. Astrobiology, 12, 2012, pp. 498-507.10.1089/ast.2011.0772 Search in Google Scholar

94. Santomartino, R., Waajen, A.C., de Wit, W. No effect of microgravity and simulated Mars gravity on final bacterial cell concentrations on the International Space Station: applications to space bioproduction. Front. Microbiol. 11, 2020, 579156.10.3389/fmicb.2020.579156 Search in Google Scholar

95. Braddock, M. Limitations for colonisation and civilisation build and the potential for human enhancements. In: Human Enhancements for Space Missions. Space and Society. Szocik K. (eds) Springer, Cham. publishers 2020, pp. 71-93.10.1007/978-3-030-42036-9_5 Search in Google Scholar

96. Ilardo M, Nielsen R. Human adaptation to extreme environmental conditions. Curr. Opin. Genet. Dev. 53, 2018, pp. 77-82.10.1016/j.gde.2018.07.003 Search in Google Scholar

97. Burtscher, M., Gatterer, H., Burtscher, J., Mairbäurl, H. Extreme terrestrial environments: life in thermal stress and hypoxia. A narrative review. Front. Physiol. 9, 2018, 572.10.3389/fphys.2018.00572 Search in Google Scholar

98. Clemente F.J. et al. A selective sweep on a deleterious mutation in CPT1A in Arctic populations. Am. J. Hum. Genet. 95, 2014, pp.584–589.10.1016/j.ajhg.2014.09.016 Search in Google Scholar

99. Fumagalli, M. et al.: Greenlandic Inuit show genetic signatures of diet and climate adaptation. Science, 349, 2015, pp.1343–1347.10.1126/science.aab2319 Search in Google Scholar

100. Key F.M. et al. Human local adaptation of the TRPM8 cold receptor along a latitudinal cline. PLoS Genet. 14, 2018, e1007298.10.1371/journal.pgen.1007298 Search in Google Scholar

101. Bigham A.W. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum. Genomics 4, 2009, pp.79–90.10.1186/1479-7364-4-2-79 Search in Google Scholar

102. Simonson, T.S, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010 329, 2010, pp. 72-75. Search in Google Scholar

103. Simonson, T.S., McClain, D.A., Jorde, L.B., Prchal, J.T. Genetic determinants of Tibetan high-altitude adaptation. Hum. Genet. 2012,131, pp.527-533. Search in Google Scholar

104. Hanaoka M. et al. Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. PLoS One. 7, 2012, 50566.10.1371/journal.pone.0050566 Search in Google Scholar

105. MacInnis MJ, Wang P, Koehle MS, Rupert JL. The genetics of altitude tolerance: the evidence for inherited susceptibility to acute mountain sickness. J. Occup. Environ. Med. 53, 2011, pp.159-168.10.1097/JOM.0b013e318206b112 Search in Google Scholar

106. Peng Y, et al. Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol. Biol. Evol. 28, 2011, pp, 1075-1081.10.1093/molbev/msq290 Search in Google Scholar

107. van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt. Med. Biol. 2011 12, 2011, pp.157-167. Search in Google Scholar

108. Zhou D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain sickness in Andean highlanders. Am. J. Hum. Genet. 93, 2013, pp. 452-62.10.1016/j.ajhg.2013.07.011 Search in Google Scholar

109. Valverde G. et al. A novel candidate region for genetic adaptation to high altitude in Andean populations. PLoS One 10, 2015, 0125444.10.1371/journal.pone.0125444 Search in Google Scholar

110. Angelin-Duclos, C. et al. Thyroid hormone T3 acting through the thyroid hormone α receptor is necessary for implementation of erythropoiesis in the neonatal spleen environment in the mouse. Development 132, 2005, pp. 925–934.10.1242/dev.01648 Search in Google Scholar

111. Ilardo, M.A. et al. Physiological and genetic adaptations to diving in sea nomads. Cell, 173, 2018, pp. 569–580.10.1016/j.cell.2018.03.054 Search in Google Scholar

112. Hickey, L.T., Hafeez, A.N., Robinson, H. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 2019, pp. 744–754.10.1038/s41587-019-0152-9 Search in Google Scholar

113. Voigt, C.A. Synthetic biology 2020-2030: six commercially-available products that are changing the world. Nat Commun. 11, 2020, article 6379.10.1038/s41467-020-20122-2 Search in Google Scholar

114. Brooks, S.M., Alper, H.S. Applications, challenges, and needs for employing synthetic biology beyond the lab. Nat. Commun. 2021, 12, 1390. Search in Google Scholar

115. Reynolds, J.L. Engineering biological diversity: the international governance of synthetic biology, gene drives and de-extinction for conservation. Curr. Op. Environ. Sust. 49, 2021, pp. 1-6.10.2139/ssrn.3688323 Search in Google Scholar

116. Del Valle, I., Fulk, E.M., Kalvapalle, P. et al. Translating new synthetic biology advances for biosensing into the Earth and environmental sciences. Front. Microbiol. 11, 2021, article 618373.10.3389/fmicb.2020.618373 Search in Google Scholar

117. Douglas, T., Savulescu, J. Synthetic biology and the ethics of knowledge. J. Med. Ethics. 36, 2010, pp. 687-694.10.1136/jme.2010.038232 Search in Google Scholar

118. Wang, F., Zhang, W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. J. Biosafety & Biosecurity 1, 2019, pp. 22-30.10.1016/j.jobb.2018.12.003 Search in Google Scholar

119. Conde-Pueyo N, Vidiella B, Sardanyés J, et al. Synthetic biology for terraformation lessons from Mars, Earth, and the microbiome. Life 10, 2020:14.10.3390/life10020014 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo