1. bookVolume 9 (2020): Issue 3-4 (October 2020)
Journal Details
License
Format
Journal
First Published
03 Oct 2014
Publication timeframe
4 times per year
Languages
English
access type Open Access

Conjunctive and Disjunctive Limits: Abstract Logics and Modal Operators

Published Online: 11 Nov 2020
Page range: 66 - 71
Journal Details
License
Format
Journal
First Published
03 Oct 2014
Publication timeframe
4 times per year
Languages
English
Abstract

Departing from basic concepts in abstract logics, this paper introduces two concepts: conjunctive and disjunctive limits. These notions are used to formalize levels of modal operators.

Keywords

1. Bensusan, H., A. Costa-Leite, and E. G. de Souza. Logics and their galaxies, In A. Koslow and A. Buchsbaum (eds.), The Road to Universal Logic, vol. 2, Basel: Birkhäuser, 2015, pp. 243-252.Search in Google Scholar

2. Beziau, J-Y. Recherches sur la logique universelle (excessivité, négation et séquents, PhD Thesis, Université Denis-Diderot Paris 7, 1995.Search in Google Scholar

3. Costa-Leite, A. Logical properties of imagination. Abstracta 6 (1), 2010, pp. 103-116.Search in Google Scholar

4. Costa-Leite, A., and E. G. de Souza. Implications and limits of sequences, Studia Humana 6 (1), 2017, pp. 18-24.Search in Google Scholar

5. Costa-Leite, A. Paraconsistência, modalidades e cognoscibilidade, Available on PhilArchive: retrieved June 17, 2020 from https://philarchive.org/archive/COSPME-5, 2019 (in Portuguese).Search in Google Scholar

6. da Costa, N. On the theory of inconsistent formal systems, Notre Dame Journal of Formal Logic 15 (5), 1974, pp. 497-510.Search in Google Scholar

7. Dunn, M, and G. Hardegree. Algebraic Methods in Philosophical Logic, New York: Oxford University Press, 2001.Search in Google Scholar

8. Gabbay, D., A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal logics: theory and applications, Studies in Logic and the Foundations of Mathematics, Amsterdam: Elsevier, 2003.Search in Google Scholar

9. Tarski, A. On some fundamental concepts of metamathematics, In J. Corcoran (ed.), Logic, Semantic, Metamathematics, Second Edition, Indianapolis: Hackett Publishing Company, 1983.Search in Google Scholar

10. Tarski, A. Fundamental concepts of the methodology of deductive sciences, In J. Corcoran (ed.), Logic, Semantic, Metamathematics, Second Edition, Indianapolis: Hackett Publishing Company, 1983.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo