Open Access

Insights Into Estimation of Sand Permeability: From Empirical Relations to Microstructure-based Methods


Cite

Ahrens, J., Geveci, B., & Law, C. (2005). ParaView: An End-User Tool for Large-Data Visualization. In Visualization Handbook (pp. 717–731). Elsevier. https://doi.org/10.1016/B978-012387582-2/50038-1 AhrensJ. GeveciB. LawC. 2005 ParaView: An End-User Tool for Large-Data Visualization In Visualization Handbook 717 731 Elsevier https://doi.org/10.1016/B978-012387582-2/50038-1 Search in Google Scholar

Beyer, W. (1964). Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. Wasserwirtschaft Wassertechnik, 14(6), 165–168. BeyerW. 1964 Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve Wasserwirtschaft Wassertechnik 14 6 165 168 Search in Google Scholar

Blott, S. J., & Pye, K. (2007). Particle shape: A review and new methods of characterization and classification. Sedimentology, 55, 31–63. https://doi.org/10.1111/j.1365-3091.2007.00892.x BlottS. J. PyeK. 2007 Particle shape: A review and new methods of characterization and classification Sedimentology 55 31 63 https://doi.org/10.1111/j.1365-3091.2007.00892.x Search in Google Scholar

Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., & Pentland, C. (2013). Pore-scale imaging and modelling. Advances in Water Resources, 51, 197–216. https://doi.org/10.1016/j.advwatres.2012.03.003 BluntM. J. BijeljicB. DongH. GharbiO. IglauerS. MostaghimiP. PalusznyA. PentlandC. 2013 Pore-scale imaging and modelling Advances in Water Resources 51 197 216 https://doi.org/10.1016/j.advwatres.2012.03.003 Search in Google Scholar

Carman, P. C. (1937). Fluid Flow through Granular Beds. AIChE, 15. CarmanP. C. 1937 Fluid Flow through Granular Beds AIChE 15 Search in Google Scholar

Carman, P. C. (1956). Flow of Gases through Porous Media. Academic Press Inc. CarmanP. C. 1956 Flow of Gases through Porous Media Academic Press Inc. Search in Google Scholar

Carrier, W. D. (2003). Goodbye, Hazen; Hello, Kozeny-Carman. Journal of Geotechnical and Geoenvironmental Engineering, 129(11), 1054–1056. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054) CarrierW. D. 2003 Goodbye, Hazen; Hello, Kozeny-Carman Journal of Geotechnical and Geoenvironmental Engineering 129 11 1054 1056 https://doi.org/10.1061/(ASCE)1090-0241(2003)129:11(1054) Search in Google Scholar

Chapuis, R. P., Dallaire, V., Marcotte, D., Chouteau, M., Acevedo, N., & Gagnon, F. (2005). Evaluating the hydraulic conductivity at three different scales within an unconfined sand aquifer at Lachenaie, Quebec. Canadian Geotechnical Journal, 42(4), 1212–1220. https://doi.org/10.1139/t05-045 ChapuisR. P. DallaireV. MarcotteD. ChouteauM. AcevedoN. GagnonF. 2005 Evaluating the hydraulic conductivity at three different scales within an unconfined sand aquifer at Lachenaie, Quebec Canadian Geotechnical Journal 42 4 1212 1220 https://doi.org/10.1139/t05-045 Search in Google Scholar

Dong, H., & Blunt, M. J. (2009). Pore-network extraction from micro-computerized-tomography images. Physical Review E, 80(3), 036307. https://doi.org/10.1103/PhysRevE.80.036307 DongH. BluntM. J. 2009 Pore-network extraction from micro-computerized-tomography images Physical Review E 80 3 036307 https://doi.org/10.1103/PhysRevE.80.036307 Search in Google Scholar

Dullien, F. A. L. (1979). Single-Phase Transport Phenomena in Porous Media. In Porous Media (pp. 157–234). Elsevier. https://doi.org/10.1016/B978-0-12-223650-1.50009-7 DullienF. A. L. 1979 Single-Phase Transport Phenomena in Porous Media In Porous Media 157 234 Elsevier https://doi.org/10.1016/B978-0-12-223650-1.50009-7 Search in Google Scholar

Fatt, I. (1956). The Network Model of Porous Media. Transactions of the AIME, 207(01), 144–181. https://doi.org/10.2118/574-G FattI. 1956 The Network Model of Porous Media Transactions of the AIME 207 01 144 181 https://doi.org/10.2118/574-G Search in Google Scholar

Feldkamp, L. A., Davis, L. C., & Kress, J. W. (1984). Practical cone-beam algorithm. Journal of the Optical Society of America A, 1(6), 612. https://doi.org/10.1364/JOSAA.1.000612 FeldkampL. A. DavisL. C. KressJ. W. 1984 Practical cone-beam algorithm Journal of the Optical Society of America A 1 6 612 https://doi.org/10.1364/JOSAA.1.000612 Search in Google Scholar

Feng, J., Teng, Q., He, X., Qing, L., & Li, Y. (2018). Reconstruction of three-dimensional heterogeneous media from a single two-dimensional section via co-occurrence correlation function. Computational Materials Science, 144, 181–192. https://doi.org/10.1016/j.commatsci.2017.11.030 FengJ. TengQ. HeX. QingL. LiY. 2018 Reconstruction of three-dimensional heterogeneous media from a single two-dimensional section via co-occurrence correlation function Computational Materials Science 144 181 192 https://doi.org/10.1016/j.commatsci.2017.11.030 Search in Google Scholar

Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-Gas Automata for the Navier-Stokes Equation. Physical Review Letters, 56(14), 1505–1508. https://doi.org/10.1103/PhysRevLett.56.1505 FrischU. HasslacherB. PomeauY. 1986 Lattice-Gas Automata for the Navier-Stokes Equation Physical Review Letters 56 14 1505 1508 https://doi.org/10.1103/PhysRevLett.56.1505 Search in Google Scholar

Gostick, J. (2017). Versatile and efficient pore network extraction method using marker-based watershed segmentation. Physical Review E, 96(2), 023307. https://doi.org/10.1103/PhysRevE.96.023307 GostickJ. 2017 Versatile and efficient pore network extraction method using marker-based watershed segmentation Physical Review E 96 2 023307 https://doi.org/10.1103/PhysRevE.96.023307 Search in Google Scholar

Gostick, J., Aghighi, M., Hinebaugh, J., Tranter, T., Hoeh, M. A., Day, H., Spellacy, B., Sharqawy, M. H., Bazylak, A., Burns, A., Lehnert, W., & Putz, A. (2016). OpenPNM: A Pore Network Modeling Package. Computing in Science & Engineering, 18(4), 60–74. https://doi.org/10.1109/MCSE.2016.49 GostickJ. AghighiM. HinebaughJ. TranterT. HoehM. A. DayH. SpellacyB. SharqawyM. H. BazylakA. BurnsA. LehnertW. PutzA. 2016 OpenPNM: A Pore Network Modeling Package Computing in Science & Engineering 18 4 60 74 https://doi.org/10.1109/MCSE.2016.49 Search in Google Scholar

Gostick, J., Khan, Z., Tranter, T., Kok, M., Agnaou, M., Sadeghi, M., & Jervis, R. (2019). PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images. Journal of Open Source Software, 4(37), 1296. https://doi.org/10.21105/joss.01296 GostickJ. KhanZ. TranterT. KokM. AgnaouM. SadeghiM. JervisR. 2019 PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images Journal of Open Source Software 4 37 1296 https://doi.org/10.21105/joss.01296 Search in Google Scholar

Hazen, A. (1911). Discussion: Dams on sand foundations. Transactions, American Society of Civil Engineers, 73(11). HazenA. 1911 Discussion: Dams on sand foundations Transactions, American Society of Civil Engineers 73 11 Search in Google Scholar

Hu, Y., Li, T.-M., Anderson, L., Ragan-Kelley, J., & Durand, F. (2019). Taichi: A language for high-performance computation on spatially sparse data structures. ACM Transactions on Graphics, 38(6), 201:1–201:16. https://doi.org/10.1145/3355089.3356506 HuY. LiT.-M. AndersonL. Ragan-KelleyJ. DurandF. 2019 Taichi: A language for high-performance computation on spatially sparse data structures ACM Transactions on Graphics 38 6 201:1 201:16 https://doi.org/10.1145/3355089.3356506 Search in Google Scholar

Hussain, F., & Nabi, G. (2016). Empirical Formulae Evaluation for Hydraulic Conductivity Determination Based on Grain Size Analysis. Pyrex Journal of Research in Environmental Studies, 3, 26–32. HussainF. NabiG. 2016 Empirical Formulae Evaluation for Hydraulic Conductivity Determination Based on Grain Size Analysis Pyrex Journal of Research in Environmental Studies 3 26 32 Search in Google Scholar

Kaviany, M. (1995). Principles of Heat Transfer in Porous Media. Springer New York. https://doi.org/10.1007/978-1-4612-4254-3 KavianyM. 1995 Principles of Heat Transfer in Porous Media Springer New York https://doi.org/10.1007/978-1-4612-4254-3 Search in Google Scholar

Kelokaski, M., Siitari-Kauppi, M., Sardini, P., Möri, A., & Hellmuth, K.-H. (2006). Characterisation of pore space geometry by 14C-PMMA impregnation—Development work for in situ studies. Journal of Geochemical Exploration, 90(1–2), 45–52. https://doi.org/10.1016/j.gexplo.2005.09.005 KelokaskiM. Siitari-KauppiM. SardiniP. MöriA. HellmuthK.-H. 2006 Characterisation of pore space geometry by 14C-PMMA impregnation—Development work for in situ studies Journal of Geochemical Exploration 90 1–2 45 52 https://doi.org/10.1016/j.gexplo.2005.09.005 Search in Google Scholar

Kozeny, J. (1927). Ueber kapillare Leitung des Wassers im Boden. Sitzungsber Akad. Wiss., 136(2a), 271–306. KozenyJ. 1927 Ueber kapillare Leitung des Wassers im Boden Sitzungsber Akad. Wiss. 136 2a 271 306 Search in Google Scholar

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The Lattice Boltzmann Method: Principles and Practice. Springer International Publishing. https://doi.org/10.1007/978-3-319-44649-3 KrügerT. KusumaatmajaH. KuzminA. ShardtO. SilvaG. ViggenE. M. 2017 The Lattice Boltzmann Method: Principles and Practice Springer International Publishing https://doi.org/10.1007/978-3-319-44649-3 Search in Google Scholar

Lindquist, W. B., & Venkatarangan, A. (1999). Investigating 3D geometry of porous media from high resolution images. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(7), 593–599. https://doi.org/10.1016/S1464-1895(99)00085-X LindquistW. B. VenkataranganA. 1999 Investigating 3D geometry of porous media from high resolution images Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24 7 593 599 https://doi.org/10.1016/S1464-1895(99)00085-X Search in Google Scholar

OpenCV 4.6.0. (n.d.). https://docs.opencv.org/4.6.0/ OpenCV 4.6.0. (n.d.). https://docs.opencv.org/4.6.0/ Search in Google Scholar

Pap, M., & Mahler, A. (2018). Comparison of Different Empirical Correlations to Estimate Permeability Coefficient of Quaternary Danube Soils. Periodica Polytechnica Civil Engineering. https://doi.org/10.3311/PPci.13108 PapM. MahlerA. 2018 Comparison of Different Empirical Correlations to Estimate Permeability Coefficient of Quaternary Danube Soils Periodica Polytechnica Civil Engineering https://doi.org/10.3311/PPci.13108 Search in Google Scholar

Říha, J., Petrula, L., Hala, M., & Alhasan, Z. (2018). Assessment of empirical formulae for determining the hydraulic conductivity of glass beads. Journal of Hydrology and Hydromechanics, 66(3), 337–347. https://doi.org/10.2478/johh-2018-0021 ŘíhaJ. PetrulaL. HalaM. AlhasanZ. 2018 Assessment of empirical formulae for determining the hydraulic conductivity of glass beads Journal of Hydrology and Hydromechanics 66 3 337 347 https://doi.org/10.2478/johh-2018-0021 Search in Google Scholar

Sauerbrey, I. I. (1932). On the Problem and Determination of the Permeability Coefficient. Proceedings VNIIG, 3–5. SauerbreyI. I. 1932 On the Problem and Determination of the Permeability Coefficient Proceedings VNIIG, 3–5 Search in Google Scholar

Seelheim, F. (1880). Methoden zur Bestimmung der Durchlässigkeit des Bodens. Zeitschrift Fur Analytische Chemie, 19(1), 387–418. https://doi.org/10.1007/BF01341054 SeelheimF. 1880 Methoden zur Bestimmung der Durchlässigkeit des Bodens Zeitschrift Fur Analytische Chemie 19 1 387 418 https://doi.org/10.1007/BF01341054 Search in Google Scholar

Tranter, T. G., Kok, M. D. R., Lam, M., & Gostick, J. (2019). pytrax: A simple and efficient random walk implementation for calculating the directional tortuosity of images. SoftwareX, 10, 100277. https://doi.org/10.1016/j.softx.2019.100277 TranterT. G. KokM. D. R. LamM. GostickJ. 2019 pytrax: A simple and efficient random walk implementation for calculating the directional tortuosity of images SoftwareX 10 100277 https://doi.org/10.1016/j.softx.2019.100277 Search in Google Scholar

Valsecchi, A., Damas, S., Tubilleja, C., & Arechalde, J. (2020). Stochastic reconstruction of 3D porous media from 2D images using generative adversarial networks. Neurocomputing, 399, 227–236. https://doi.org/10.1016/j.neucom.2019.12.040 ValsecchiA. DamasS. TubillejaC. ArechaldeJ. 2020 Stochastic reconstruction of 3D porous media from 2D images using generative adversarial networks Neurocomputing 399 227 236 https://doi.org/10.1016/j.neucom.2019.12.040 Search in Google Scholar

Verruijt, A. (1970). Theory of Groundwater Flow. Macmillan Education UK. https://doi.org/10.1007/978-1-349-00175-0 VerruijtA. 1970 Theory of Groundwater Flow Macmillan Education UK https://doi.org/10.1007/978-1-349-00175-0 Search in Google Scholar

Vukovic, M., & Soro, A. (1992). Determination of Hydraulic Conductivity of Porous Media from Grain-size Composition. Water Resources Publications. https://books.google.pl/books?id=q_FOAQAAIAAJ VukovicM. SoroA. 1992 Determination of Hydraulic Conductivity of Porous Media from Grain-size Composition Water Resources Publications https://books.google.pl/books?id=q_FOAQAAIAAJ Search in Google Scholar

Wyllie, M. R. J., & Rose, W. D. (1950). Application of the Kozeny Equation to Consolidated Porous Media. Nature, 165(4207), 972–972. https://doi.org/10.1038/165972a0 WyllieM. R. J. RoseW. D. 1950 Application of the Kozeny Equation to Consolidated Porous Media Nature 165 4207 972 972 https://doi.org/10.1038/165972a0 Search in Google Scholar

Yang, J., Xu, Y., & Yang, L. (2022). Taichi-LBM3D: A Single-Phase and Multiphase Lattice Boltzmann Solver on Cross-Platform Multicore CPU/GPUs. Fluids, 7(8), Article 8. https://doi.org/10.3390/fluids7080270 YangJ. XuY. YangL. 2022 Taichi-LBM3D: A Single-Phase and Multiphase Lattice Boltzmann Solver on Cross-Platform Multicore CPU/GPUs Fluids 7 8 Article 8. https://doi.org/10.3390/fluids7080270 Search in Google Scholar

Živković, P., Burečić Šafran, M., & Kovačević Zelić, B. (2021). Comparison of measured and estimated permeability for artificially prepared coarse-grained soil samples. Rudarsko-Geološko-Naftni Zbornik, 36(3), 167–178. https://doi.org/10.17794/rgn.2021.3.12 ŽivkovićP. Burečić ŠafranM. Kovačević ZelićB. 2021 Comparison of measured and estimated permeability for artificially prepared coarse-grained soil samples Rudarsko-Geološko-Naftni Zbornik 36 3 167 178 https://doi.org/10.17794/rgn.2021.3.12 Search in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics