1. bookVolume 44 (2022): Issue 2 (June 2022)
Journal Details
License
Format
Journal
eISSN
2083-831X
First Published
09 Nov 2012
Publication timeframe
4 times per year
Languages
English
Open Access

Upper Bounds for the Complex Growth Rate of a Disturbance in Ferrothermohaline Convection

Published Online: 10 Mar 2022
Volume & Issue: Volume 44 (2022) - Issue 2 (June 2022)
Page range: 114 - 122
Received: 13 Jun 2020
Accepted: 29 Dec 2021
Journal Details
License
Format
Journal
eISSN
2083-831X
First Published
09 Nov 2012
Publication timeframe
4 times per year
Languages
English
Introduction

Ferrofluids, also known as magnetic fluids, are colloidal suspensions of nano-sized ferromagnetic particles stably dispersed in a carrier liquid. For most applications, it is absolutely essential that the ferrofluids must be very stable with regard to temperature and in the presence of magnetic field. The agglomeration of particles is avoided by some surfactant coating. Ferrofluids have wide range of practical applications, which include treatment of ulcers and brain tumors, destroying cancer cells, sealing of computer hard disc drives, cooling down of loudspeakers, noiseless jet printing system, etc. (Rosensweig [18], Odenbach [7, 8]).

The study of thermal convection in ferrofluids has gained much importance in recent decades. Finlayson [2] studied the convective instability of ferromagnetic fluids and explained the concept of thermomechanical interactions in ferrofluids. Lalas and Carmi [5] investigated the thermoconvective stability of ferrofluids without considering buoyancy effects. Rosensweig et al. [17] investigated experimentally the penetration of ferrofluids in a Hele-Shaw cell. For further details on the subject of ferroconvection, one may refer to Sekar et al. [20,21], Sekar and Vaidyanathan [19], Gupta and Gupta [3], Shliomis [26], Vaidyanathan et al. [29], Rahman and Suslov [16], Nataraj and Bhavya [6], Prakash [9,10,12], and Prakash et al. [15].

These researchers have performed their analysis by considering ferroconvection as a single diffusive system with heat as an only diffusive component. Since ferrofluids are mostly suspensions of magnetic salts in an organic carrier, it is equally important to study the convective instability in double diffusive systems, which is also known as ferrothermohaline convection configurations. Several researchers have contributed to the development of this problem. Vaidyanathan et al. [30,31] analyzed the ferrothermohaline instability problem in porous and nonporous medium, respectively, for stationary as well as oscillatory modes by using linear stability theory. Sekar and Raju [24] studied the effect of sparse distribution pores in thermohaline convection in a micropolar ferromagnetic fluid. Sunil et al. [27] investigated thermosolutal convection in a ferrofluid layer heated and soluted from below in the presence of uniform vertical magnetic field and obtained exact solutions for the case of two free boundaries. Sekar et al. [22] have analyzed ferrothermohaline convection in a rotating medium heated from below and salted from above and have shown that stationary mode of convection is more favorable in comparison to oscillatory mode of convection. The effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium was investigated by Sunil et al. [28]. Sekar et al. [23] performed a linear analytical study of Soret-driven ferrothermohaline convection in an anisotropic porous medium. Sekar and Murugan [25] studied the stability analysis of ferrothermohaline convection in a Darcy porous medium with Soret and magnetic field–dependent viscosity effects.

Since for a double diffusive ferroconvection problem, the exact solutions in closed form are not possible for the cases where at least one of the boundaries is rigid, in order to facilitate the experimentalists and numerical analysts with better estimates of the complex growth rate of an arbitrary oscillatory motion of neutral or growing amplitude, the problem of obtaining its upper bounds has its own importance. Initially, Banerjee et al. [1] and Gupta et al. [4] had derived the bounds for the complex growth rate of arbitrary oscillatory perturbations in some thermohaline convection problems. Later, this problem was extended to triply diffusive convection by Prakash et al. [13]. Recently, Prakash [9, 10] has also derived the upper bounds for the complex growth rates in some ferromagnetic convection problems in porous/nonporous medium. Prakash and Gupta [11] have extended his work to ferromagnetic convection with rotation and magnetic field–dependent viscosity. Recently, Prakash et al. [14] also derived the upper bounds for complex growth rates in ferromagnetic convection in a rotating porous medium.

In the present communication, as a further step, we have derived the upper bounds for the complex growth rate of a disturbance in ferrothermohaline convection in a ferrofluid layer heated and soluted from below in the presence of a uniform vertical magnetic field by using linear stability theory.

Mathematical Formulation of the Problem

A ferromagnetic Boussinesq fluid layer of infinite horizontal extension and finite vertical depth, heated and salted from below, has been considered. The lower (z=0) and upper (z=d) boundaries are, respectively, maintained at temperatures T0 and T1 (<T0) and concentrations C0 and C1 (<C0). A uniform magnetic field H acts along the vertical direction, which is taken as the z-axis (see Figure 1).

Figure 1

Geometrical configuration of the problem.

The mathematical equations governing the flow of the ferromagnetic fluid for the above model were given by Sunil et al. [27]. .q=0, \nabla.\,{\boldsymbol {q}} = 0, ρ0DqDt=p+ρg+.(HB)+μ2q, {\rho _0}{{D{\boldsymbol {q}}} \over {Dt}} =- \nabla p + \rho {\boldsymbol {g}}+\nabla.\left({\boldsymbol {HB}} \right) + \mu {\nabla ^2}{\boldsymbol {q}}, [ρ0CV,Hμ0H.(MT)V,H]DTDt++μ0T(MT)V,H.DHDt=K12T+ΦT, \matrix{{\left[{{\rho _0}{C_{V,H}} - {\mu _0}{\boldsymbol {H}}.{{\left({{{\partial {\boldsymbol {M}}} \over {\partial T}}} \right)}_{V,{\boldsymbol {H}}}}} \right]{{DT} \over {Dt}} +} \hfill\cr{+ {\mu _0}T{{\left({{{\partial {\boldsymbol {M}}} \over {\partial T}}} \right)}_{V,{\boldsymbol {H}}}}.{{D{\boldsymbol {H}}} \over {Dt}} = {K_1}{\nabla ^2}T + {\Phi _T},} \hfill\cr} [ρ0CV,Hμ0H.(MC)V,H]DTDt++μ0C(MC)V,H.DHDt=K12C+ΦC, \matrix{{\left[{{\rho _0}{C_{V,H}} - {\mu _0}{\boldsymbol {H}}.{{\left({{{\partial {\boldsymbol {M}}} \over {\partial C}}} \right)}_{V,{\boldsymbol {H}}}}} \right]{{DT} \over {Dt}} +} \hfill\cr{+ {\mu _0}C{{\left({{{\partial {\boldsymbol {M}}} \over {\partial C}}} \right)}_{V,{\boldsymbol {H}}}}.{{D{\boldsymbol {H}}} \over {Dt}} = K_1^{'}{\nabla ^2}C + {\Phi _C},} \hfill\cr} where q, t, p, H, B, μ, g= (0,0-g) denote the velocity, time, pressure, magnetic field, magnetic induction, coefficient of viscosity, and acceleration due to gravity, respectively. CV,H is the heat capacity at constant volume and magnetic field, μ0 is the magnetic permeability, T is the temperature, C is the solute concentration, M is magnetization, K1 is thermal conductivity, K1 is the solute conductivity, and ΦT and ΦC are the viscous dissipation containing second-order terms in velocity. ΦT and ΦC, being small of second order, may be neglected.

The equation of state is given by ρ=ρ0[1α(TT0)+α(CC0)], \rho= {\rho _0}\left[{1 - \alpha \left({T - {T_0}} \right) + \alpha {'}\left({C - {C_0}} \right)} \right], where ρ is the fluid density, ρ0 is the reference density, α is the coefficient of volume expansion, and α‘ is an analogous solvent coefficient of expansion.

In Eq. (2), the viscosity is assumed to be isotropic and independent of the magnetic field.

Maxwell's equations, for a nonconducting fluid, with no displacement currents, are given by .B=0, \nabla.{\boldsymbol {B}} = 0, ×H=0. \nabla\times {\boldsymbol {H}} = 0.

Further, the relation between B and H is expressed as B=μ0(H+M). {\boldsymbol {B}} = {\mu _0}\left({{\boldsymbol {H}} + {\boldsymbol {M}}} \right).

It is assumed that magnetization is aligned with the magnetic field intensity and depends on the magnitude of magnetic field, temperature, and salinity, so that M=HHM(H,T,C), {\boldsymbol {M}} = {{\boldsymbol {H}} \over H}M\left({H,T,C} \right), and the linearized magnetic equation of state is given by M=M0+χ(HH0)K2(TT0)+K3(CC0). M = {M_0} + \chi \left({H - {H_0}} \right) - {K_2}\left({T - {T_0}} \right) + {K_3}\left({C - {C_0}} \right).

In the above equation, M0 = M(H0, T0, C0) is magnetization when the magnetic field is H0, temperature is T0, and the concentration is C0. χ = (∂M/∂C)H0, T0 is magnetic susceptibility, K2 = (∂M/∂C) H0, T0 is the pyromagnetic coefficient, K3 = (∂M/∂C) H0, C0 is the salinity magnetic coefficient, H is the magnitude of H, and M is the magnitude of M.

The basic state is assumed to be static and is given by q=qb=0,p=pb(z),ρ=ρb(z),T==Tb(z)=βz+T0,C=Cb(z)=βz+C0,β=T0T1d,β=C0C1d,Hb==[H0K2βz1+χ+K3βz1+χ]k^,Mb=[M0+K2βz1+χK3βz1+χ]k^,H0+M0=H0ext, \matrix{{{\boldsymbol {q}} = {{\boldsymbol {q}}_b} = {\bf{0}},\,p = {p_b}\left(z \right),\,\rho= {\rho _b}\left(z \right),T =}\cr{= {T_b}\left(z \right) =- \beta z + {T_0},\,C = {C_b}\left(z \right) =- \beta {'}z + {C_0},}\cr{\beta= {{{T_0} - {T_1}} \over d},\,\beta {'} = {{{C_0} - {C_1}} \over d},\,{{\boldsymbol {H}}_b} =}\cr{= \left[{{H_0} - {{{K_2}\beta z} \over {1 + \chi}} + {{{K_3}\beta {'}z} \over {1 + \chi}}} \right]{\boldsymbol{\hat k}},\,{{\boldsymbol {M}}_b} = \left[{{M_0} + {{{K_2}\beta z} \over {1 + \chi}} - {{{K_3}\beta {'}z} \over {1 + \chi}}} \right]{\boldsymbol{\hat k}},}\cr{{H_0} + {M_0} = {H_0}^{{\rm{ext}}},}\cr} where k^ \hat k is the unit vector in the z direction.

Only the spatially varying parts of H0 and M0 contribute to the analysis, so that the direction of the external magnetic field is unimportant and the convection is the same whether the external magnetic field is parallel or antiparallel to the gravitational force (Finlayson [2]).

Now, the stability of the system is analyzed by perturbing the basic state. The perturbed state is given by q=qb+q,ρ=ρb(z)+ρ,p=pb(z)++p,T=Tb(z)+θ,C=Cb(z)+ϕ,H=Hb(z)+H',M=Mb(z)+M', \matrix{{{\boldsymbol {q}} = {{\boldsymbol {q}}_b} + {\boldsymbol {q}}{'},\,\rho= {\rho _b}\left(z \right) + \rho {'},p = {p_b}\left(z \right) +}\cr{+ p{'},\,T = {T_b}\left(z \right) + \theta {'},\,C = {C_b}\left(z \right) + \phi {'},}\cr{{\boldsymbol {H}} = {{\boldsymbol {H}}_b}\left(z \right) + {\boldsymbol {H}}{'},\,{\boldsymbol{M}}={{\boldsymbol {M}}_b}\left(z \right) + {\boldsymbol{M{'},}}}\cr} where q = (u, v, w), ρ, p, θ, ϕ, H, and M are infinitesimal perturbations in velocity, density, pressure, temperature, concentration, magnetic field intensity, and magnetization. Using Eq. (11) into Eqs (1)(9) and using the basic state solutions, we obtain the following linearized perturbation equations: ux+vy+wz=0, {{\partial u{'}} \over {\partial x}} + {{\partial v{'}} \over {\partial y}} + {{\partial w{'}} \over {\partial z}} = 0, ρ0=ut=px+μ0(M0+H0)H1z+μ2u, {\rho _0} = {{\partial u{'}} \over {\partial t}} =- {{\partial p{'}} \over {\partial x}} + {\mu _0}\left({{M_0} + {H_0}} \right){{\partial H_1^{'}} \over {\partial z}} + \mu {\nabla ^2}u{'}, ρ0=vt=py+μ0(M0+H0)H2z+μ2v, {\rho _0} = {{\partial v{'}} \over {\partial t}} =- {{\partial p{'}} \over {\partial y}} + {\mu _0}\left({{M_0} + {H_0}} \right){{\partial H_2^{'}} \over {\partial z}} + \mu {\nabla ^2}v{'}, ρ0wt=pz+μ0(M0+H0)H3z+μ2wμ0K2β(1+χ)(H3(1+χ)k2θ)++μ0k3β(1+χ)(H31(1+χ)+k3ϕ)μ0k2k3(1+χ)(βθ+βϕ)+ρ0g(αθαϕ), \matrix{{{\rho _0}{{\partial w{'}} \over {\partial t}} =- {{\partial p{'}} \over {\partial z}} + {\mu _0}\left({{M_0} + {H_0}} \right){{\partial H_3^{'}} \over {\partial z}} + \mu {\nabla ^2}w{'} -}\cr{- {{{\mu _0}{K_2}\beta} \over {\left({1 + \chi} \right)}}\left({H_3^{'}\left({1 + \chi} \right) - {k_2}\theta {'}} \right) +}\cr{+ {{{\mu _0}{k_3}\beta {'}} \over {\left({1 + \chi} \right)}}\left({H_3^1\left({1 + \chi} \right) + {k_3}\phi {'}} \right) - {{{\mu _0}{k_2}{k_3}} \over {\left({1 + \chi} \right)}}\left({\beta {'}\theta {'} + \beta \phi {'}} \right) +}\cr{{\rho _0}g\left({\alpha \theta {'} - \alpha {'}\phi {'}} \right),}\cr} ρC1θtμ0T0.K2t(Φ1z)==K12θ+(ρC1βμ0T0K22β1+χ)w,+(ρ) \matrix{{\rho {C_1}{{\partial \theta {'}} \over {\partial t}} - {\mu _0}{T_0}.{K_2}{\partial\over {\partial t}}\left({{{\partial \Phi _1^{'}} \over {\partial z}}} \right) =}\cr{= {K_1}{\nabla ^2}\theta {'} + \left({\rho {C_1}\beta- {{{\mu _0}{T_0}{K_2}^2\beta} \over {1 + \chi}}} \right)w{'},}\cr} whereρC1.=ρ0CV,H+μ0K2H0, {\rm{where}}\,\rho {C_{1.}} = {\rho _0}{C_{V,H}} + {\mu _0}{K_2}{H_0}, ρC2ϕtμ0C0.K3t(Φ21z)=K12ϕ++(ρC2βμ0C0K32β1+χ)w, \matrix{{\rho {C_2}{{\partial \phi {'}} \over {\partial t}} - {\mu _0}{C_{0.}}{K_3}{\partial\over {\partial t}}\left({{{\partial \Phi _2^{'}} \over {\partial z}}} \right) = K_1^{'}{\nabla ^2}\phi {'} +}\cr{+ \left({\rho {C_2}\beta {'} - {{{\mu _0}{C_0}{K_3}^2\beta {'}} \over {1 + \chi}}} \right)w{'},}\cr} whereρC2.=ρ0CV,H+μ0K3H0,and {\rm{where}}\,\rho {C_{2.}} = {\rho _0}{C_{V,H}} + {\mu _0}{K_3}{H_0},\,{\rm{and}} H3+M3=(1+χ)H3K2θ,H3++M3=.(1+χ)H3+K3ϕ,Hj+Mi=(1+M0H0)Hi(i1,2), \matrix{{H_3^{'} + M_3^{'} = \left({1 + \chi} \right)H_3^{'} - {K_2}\,\theta {'},\,H_3^{'} +}\cr{+ M_3^{'} =.\left({1 + \chi} \right)H_3^{'} + {K_3}\phi {'},}\cr{H_i^{'} + M_i^{'} = \left({1 + {{{M_0}} \over {{H_0}}}} \right)H_i^{'}\left({i - 1,2} \right),}\cr} where we have assumed K2βd≪(1+χ)H0, K3βd≪(1+χ)H0. Eq. (6b) means that we can write H=∇ (Φ1Φ2), where Φ1 is the perturbation magnetic scalar potential and Φ2 is the perturbation magnetic scalar potential analogous to solute.

Now, following Finlayson [2] and Sunil et al. [27] and using the normal mode technique by assuming to all quantities describing the perturbation a dependence on x, y, and t of the form (w,θ,ϕ,Φ1,Φ2)(x,y,z,t)==[w"(z),θ"(z),ϕ"(z),.Φ1"(z),Φ1"(z).]exp[i(kxx+kyy).+.nt], \matrix{{\left({w{'},\theta {'},\phi {'},\Phi _1^{'},\Phi _2^{'}} \right)\left({x,y,z,t} \right) =}\cr{= \left[{w{'}{'}\left(z \right),\theta {'}{'}} \right.\left(z \right),\phi {'}\left(z \right),.\Phi _1^{{'}{'}}\left(z \right),}\cr{\left. {\Phi _1^{{'}{'}}\left(z \right).} \right]\exp \left[{i\left({{k_x}x + {k_y}y} \right). +.nt} \right],}\cr} where kx and ky are the wave numbers along x and y directions, respectively, and k=kx2+ky2 k = \sqrt {k_x^2 + k_y^2} is the resultant wave number, nn is a complex constant in general, and nondimentionalizing the variables by setting z*=zd,w*=dvw",a=kd,D*=dddz,ϕ*==K1aRs1/2(ρC2)βvdϕ",θ*=K1aR1/2(ρC1)βvdθ",Φ1*==(1+χ)K1aR1/2K2(ρC1)βvd2Φ1",Φ2*=(1+χ)K1aRs1/2K3(ρC2)βvd2Φ2",v=μρ0,Pr=Pr=vρC2K1,Pr=vρC1K1,R=gαβd4ρC1K1v,Rs==gαβd4ρC2K1v,M1=μ0K22β(1+χ)αρ0g,M1=μ0K32β.(1+χ)αρ0g,M2=μ0T0K22(1+χ)ρC1,M2=μ0C0K32(1+χ)ρC2,M3=1+M0H0(1+χ),M4=μ0K2K3ν'(1+χ)αρ0g,M41=μ0K2K3β(1+χ)αρ0g,M5=M4M1=M1M4=K3βK2β,σ=nd2v, \matrix{{{z_*} = {z \over d},\,{w_*} = {d \over v}\,w{'}{'},\,a = kd,\,{D_*} = d{d \over {dz}},\,{\phi _*} =}\cr{= {{K_1^{'}a{R_s}^{1/2}} \over {\left({\rho {C_2}} \right)\beta {'}vd}}\phi {'}{'},{\theta _*} = {{{K_1}a{R^{1/2}}} \over {\left({\rho {C_1}} \right)\beta v\,d}}\theta {'}{'},\,{\Phi _{{1_*}}} =}\cr{= {{\left({1 + \chi} \right){K_1}a{R^{1/2}}} \over {{K_2}\left({\rho {C_1}} \right)\beta v\,{d^2}}}\Phi _1^{{'}{'}},{\Phi _{{2_*}}} = {{\left({1 + \chi} \right)K_1^{'}a{R_s}^{1/2}} \over {{K_3}\left({\rho {C_2}} \right)\beta {'}v\,{d^2}}}\Phi _2^{{'}{'}},\,v = {\mu\over {{\rho _0}}},P_r^{'} =}\cr{P_r^{'} = {{v\rho {C_2}} \over {K_1^{'}}},\,{P_r} = {{v\rho {C_1}} \over {{K_1}}},\,R = {{g\alpha \beta {d^4}\rho {C_1}} \over {{K_1}v}},\,{R_s} =}\cr{= {{g\alpha {'}\beta {'}{d^4}\rho {C_2}} \over {K_1^{'}v}},\,{M_1} = {{{\mu _0}{K_2}^2\beta} \over {\left({1 + \chi} \right)\alpha {\rho _0}g}},M_1^{'} = {{{\mu _0}{K_3}^2\beta {'}.} \over {\left({1 + \chi} \right)\alpha {'}{\rho _0}g}},}\cr{{M_2} = {{{\mu _0}{T_0}{K_2}^2} \over {\left({1 + \chi} \right)\rho {C_1}}},M_2^{'} = {{{\mu _0}{C_0}{K_3}^2} \over {\left({1 + \chi} \right)\rho {C_2}}},{M_3} = {{1 + {{{M_0}} \over {{H_0}}}} \over {\left({1 + \chi} \right)}},}\cr{{M_4} = {{{\mu _0}{K_2}{K_3}\beta {'}} \over {\left({1 + \chi} \right)\alpha {\rho _0}g}},M_4^{'} = {{{\mu _0}{K_2}{K_3}\beta} \over {\left({1 + \chi} \right)\alpha {'}{\rho _0}g}},}\cr{{M_5} = {{{M_4}} \over {{M_1}}} = {{M_1^{'}} \over {M_4^{'}}} = {{{K_3}\beta {'}} \over {{K_2}\beta}},\sigma= {{n{d^2}} \over v},}\cr} we obtain the following nondimensional equations (dropping the asterisks for convenience): (D2a2)(D2a2σ)w=aR1/2[(1+M1M4)θ(M1M4)DΦ1]aRs1/2[(1M1+M4)ϕ(M4M1)DΦ2], \matrix{{\left({{D^2} - {a^2}} \right)\left({{D^2} - {a^2} - \sigma} \right)w = a{R^{1/2}}\left[{\left({1 + {M_1} - {M_4}} \right)\theta-} \right.}\cr{\left. {- \left({{M_1} - {M_4}} \right)D{\Phi _1}} \right] - a{R_s}^{1/2}\left[{\left({1 - M_1^{'} + M_4^{'}} \right)\phi-} \right.}\cr{\left. {\left({M_4^{'} - M_1^{'}} \right)D{\Phi _2}} \right],}\cr} (D2a2σPr)θ=(1M2)aR1/2wPrM2σDΦ1, \left({{D^2} - {a^2} - \sigma {P_r}} \right)\theta=- \left({1 - {M_2}} \right)a{R^{1/2}}w - {P_r}{M_2}\sigma D{\Phi _1}, (D2a2σPr)ϕ=(1M2)aRs1/2wPrM2σDΦ2, \left({{D^2} - {a^2} - \sigma P_r^{'}} \right)\phi=- \left({1 - M_2^{'}} \right)a{R_s}^{1/2}w - P_r^{'}M_2^{'}\sigma D{\Phi _2}, (D2a2M3)Φ1=Dθ,and \left({{D^2} - {a^2}{M_3}} \right){\Phi _1} = D\theta,\,{\rm{and}} (D2a2M3)Φ2=Dϕ. \left({{D^2} - {a^2}{M_3}} \right){\Phi _2} = D\phi.

In the above equations, z is a real independent variable such that 0≤z≤1, D is differentiation with respect to z, a2 is square of the wave number, Pr>0 is Prandtl number, Pr>0 is Prandtl number analogous to the solute, σ is the complex growth rate, R>0 is thermal Rayleigh number, Rs>0 is the concentration Rayleigh number, M1>0 is the ratio of magnetic force due to temperature fluctuation to the gravitational force, M2>0 is the ratio of thermal flux due to magnetization to magnetic flux, M1>0 is the ratio of magnetic flux due to concentration fluctuation to the gravitational force, M2>0 is the ratio of mass flux due to magnetization to magnetic flux, M4>0 and M4>0 are nondimensional parameters, M5>0 is the ratio of concentration effect on magnetic field to pyromagnetic coefficient, M3>0 is the measure of nonlinearity of magnetization, σ= σr+i is a complex constant in general, such that σr and σi are real constants, and as a consequence, the dependent variables w(z)= wr(z)+ iwi(z), θ(z)= θr(z)+ i(z), Φ(z)= Φr(z)+ i(z), and Φ1(z)= Φ1r(z)+ i Φ1i(z) are the complex valued functions of the real variable z, such that wr(z), wi(z), θr(z), θi(z), ϕr(z), ϕi(z), Φ1r(z), Φ1i(z), Φ2r(z), and Φ2i(z) are the real valued functions of the real variable z.

Since M2 and M2 are of very small order (Finlayson [2]), they are neglected in the subsequent analysis, and therefore, Eqs (24) and (25) takes the forms (D2a2σPr)θ=aR1/2wand \left({{D^2} - {a^2} - \sigma {P_r}} \right)\theta=- a{R^{1/2}}\,w\,{\rm{and}} (D2a2σPr)ϕ=aRs1/2w, \left({{D^2} - {a^2} - \sigma P_r^{'}} \right)\phi=- a{R_s}^{1/2}\,w, respectively.

The boundary conditions are given by w=0=θ=ϕ=D2w=DΦ1=DΦ2atz=0andz=1 \matrix{{w = 0 = \theta= \phi= {D^2}w = D{\Phi _1} = D{\Phi _2}}\cr{{\rm{at}}\,z = 0\,{\rm{and}}\,z = 1}\cr} (both the boundaries are free) orw=0=θ=ϕ=Dw=Φ1=Φ2atz=0andz=1 \matrix{{{\rm{or}}\,w = 0 = \theta= \phi= Dw = {\Phi _1} = {\Phi _2}}\cr{{\rm{at}}\,z\, = 0\,{\rm{and}}\,z = 1}\cr} (both the boundaries are rigid).

It may further be noted that Eqs (23) and (26)(31) describe an eigenvalue problem for σ and govern thermosolutal ferromagnetic convection in ferrofluid layer heated and salted from below.

Mathematical Analysis

We now derive the upper bounds for the complex growth rate of the arbitrary oscillatory motions of neutral or growing amplitude for the cases of free and rigid boundaries separately, respectively, in the form of following theorems:

Theorem 1

If R>0, Rs>0, M1>0,1-(1/M5) <0, Pr>0, σr≥0, and σi≠0, then a necessary condition for the existence of a nontrivial solution (w, θ, ϕ, Φ1, Φ2, σ) of Eqs (23) and (26)(29) together with the boundary conditions in Eq. (30) is that |σ|<Rs[1M1(11M5)]Pr. \left| \sigma\right| < \sqrt {{{{R_s}\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {P_r^{'}}}}.

Proof

Multiplying Eq. (23) by w* (the superscript * here denotes the complex conjugation) throughout and integrating the resulting equation over the vertical range of z, we get 01w*(D2a2)(D2a2σ)wdz==aR1/2(1+M1M4)01w*θdzaR1/2(M1M4)01w*DΦ1dzaRs1/2(1M1+M4)01w*ϕdz+aRs1/2(M4M1)01w*DΦ2dz. \matrix{{\int_0^1 {{w^*}\left({{D^2} - {a^2}} \right)\left({{D^2} - {a^2} - \sigma} \right)w\,dz =}}\cr{= a{R^{1/2}}\left({1 + {M_1} - {M_4}} \right)\int_0^1 {{w^*}\theta \,dz -}}\cr{- a{R^{1/2}}\left({{M_1} - {M_4}} \right)\int_0^1 {{w^*}D{\Phi _1}dz - a{R_s}^{1/2}\left({1 - M_1^{'} +} \right.}}\cr{\left. {M_4^{'}} \right)\int_0^1 {{w^*}\phi \,dz + a{R_s}^{1/2}\left({M_4^{'} - M_{^1}^{'}} \right)\int_0^1 {{w^*}D{\Phi _2}dz.}}}\cr}

Using Eqs (26)(29) and the boundary conditions in Eq. (30), we can write aR1/2(1+M1M4)01w*θdz==(1+M1(1M5))01θ(D2a2Prσ*)θ*dz, \matrix{{a{R^{1/2}}\left({1 + {M_1} - {M_4}} \right)\int_0^1 {{w^*}\theta \,dz =}}\cr{=- \left({1 + {M_1}\left({1 - {M_5}} \right)} \right)\int_0^1 {\theta \left({{D^2} - {a^2} - {P_r}{\sigma ^*}} \right){\theta ^*}dz,}}\cr} aR1/2(M1M4)01w*DΦ1dz=M1(1M5)01DΦ1(D2a2Prσ*)θ*dz=M1(1M5)01D2Φ1Dθ*dz+M1(1M5)(a2+Prσ*)01Φ1Dθ*dz=M1(1M5)01D2Φ1(D2a2M3)Φ1*dz++M1(1M5)(a2+Prσ*)01Φ1(D2a2M3)Φ1*dz(utilizingEq.(26)), \matrix{{- a{R^{1/2}}\left({{M_1} - {M_4}} \right)\int_0^1 {{w^*}\,D{\Phi _1}dz = {M_1}\left({1 -} \right.}}\cr{\left. {- {M_5}} \right)\,\int_0^1 {D{\Phi _1}\left({{D^2} - {a^2} - {P_r}{\sigma ^*}} \right){\theta ^*}dz}}\cr{=- {M_1}\left({1 - {M_5}} \right)\int_0^1 {{D^2}{\Phi _1}D{\theta ^*}dz + {M_1}\left({1 -} \right.}}\cr{\left. {- {M_5}} \right)\left({{a^2} + {P_r}{\sigma ^*}} \right)\,\int_0^1 {{\Phi _1}D{\theta ^*}dz}}\cr{=- {M_1}\left({1 - {M_5}} \right)\,\int_0^1 {{D^2}{\Phi _1}\left({{D^2} - {a^2}{M_3}} \right){\Phi _1}^*dz +}}\cr{+ {M_1}\left({1 - {M_5}} \right)\left({{a^2} + {P_r}{\sigma ^*}} \right)\,\int_0^1 {{\Phi _1}\left({{D^2} -} \right.}}\cr{\left. {- {a^2}{M_3}} \right){\Phi _1}^*\,dz\,\left({{\rm{utilizing}}\,{\rm{Eq}}.\,\left({26} \right)} \right),}\cr} aRs1/2(1M1+M4)01w*ϕdz==[1M1(11M5)]01ϕ(D2a2Prσ*)ϕ*dz, \matrix{{- a{R_s}^{1/2}\left({1 - M_1^{'} + M_4^{'}} \right)\int_0^1 {{w^*}\,\phi dz =}}\cr{= \left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]\int_0^1 {\phi \left({{D^2} - {a^2} - P_r^{'}{\sigma ^*}} \right){\phi ^*}dz,}}\cr} aRs1/2(M4M1)01w*DΦ2dz==M4(1M5)01DΦ2(D2a2Prσ*)ϕ*dz=M4(1M5)01D2Φ2Dϕ*dzM4(1M5)(a2+Prσ*)01Φ2Dϕ*dz=M4(1M5)01D2Φ2(D2a2M3)Φ2*dzM4(1M5)(a2+Prσ*)01Φ2(D2a2M3)Φ2*dz(utilizingEq.(27)). \matrix{{a{R_s}^{1/2}\left({M_4^{'} - M_1^{'}} \right)\int_0^1 {{w^*}\,D{\Phi _2}dz =}}\cr{=- M_4^{'}\left({1 - {M_5}} \right)\int_0^1 {D{\Phi _2}\left({{D^2} - {a^2} - P_r^{'}{\sigma ^*}} \right){\phi ^*}dz}}\cr{= M_4^{'}\left({1 - {M_5}} \right)\int_0^1 {{D^2}{\Phi _2}D{\phi ^*}dz - M_4^{'}\left({1 -} \right.}}\cr{\left. {- {M_5}} \right)\left({{a^2} + P_r^{'}{\sigma ^*}} \right)\int_0^1 {{\Phi _2}D{\phi ^*}\,dz}}\cr{= M_4^{'}\left({1 - {M_5}} \right)\int_0^1 {{D^2}{\Phi _2}\left({{D^2} - {a^2}\,{M_3}} \right){\Phi _2}^*\,dz -}}\cr{- M_4^{'}\left({1 - {M_5}} \right)\left({{a^2} + P_r^{'}{\sigma ^*}} \right)\int_0^1 {{\Phi _2}\left({{D^2} -} \right.}}\cr{\left. {- {a^2}\,{M_3}} \right){\Phi _2}^*dz\left({{\rm{utilizing}}\,{\rm{Eq}}.\,\left({27} \right)} \right).}\cr}

Combining Eqs (32)(36), we get 01w*(D2a2)(D2a2σ)wdz=(1+M1(1M5))01θ(D2a2Prσ*)θ*dzM1(1M5)01D2Φ1(D2a2M3)Φ1*dz+M1(1M5)(a2+Prσ*)01Φ1(D2a2M3)Φ1*dz+[1M1(11M5)]01ϕ(D2a2Prσ*)ϕ*dz+M4(1M5)01D2Φ2(D2a2M3)Φ2*dzM4(1M5)(a2+Prσ*)01Φ2(D2a2M3)Φ2*dz. \matrix{{\int_0^1 {{w^*}\left({{D^2} - {a^2}} \right)\left({{D^2} - {a^2} - \sigma} \right)w\,dz}}\cr{=- \left({1 + {M_1}\left({1 - {M_5}} \right)} \right)\int_0^1 {\theta \left({{D^2} - {a^2}} \right. -}}\cr{\left. {- {P_r}{\sigma ^*}} \right){\theta ^*}\,dz - {M_1}\left({1 - {M_5}} \right)\int_0^1 {{D^2}{\Phi _1}\left({{D^2} -} \right.}}\cr{\left. {- {a^2}{M_3}} \right){\Phi _1}^*\,dz + {M_1}\left({1 - {M_5}} \right)\,\left({{a^2} + {P_r}{\sigma ^*}} \right)\int_0^1 {{\Phi _1}\left({{D^2} -} \right.}}\cr{\left. {{a^2}{M_3}} \right){\Phi _1}^*\,dz + \left[{1 - M_1^{'}\,\left({1 - {1 \over {{M_5}}}} \right)} \right]\int_0^1 {\phi \left({{D^2} -} \right.}}\cr{\left. {- {a^2} - P_r^{'}{\sigma ^*}} \right)\,{\phi ^*}\,dz + M_4^{'}\left({1 -} \right.}\cr{\left. {- {M_5}} \right)\int_0^1 {{D^2}\,{\Phi _2}\left({{D^2} - {a^2}\,{M_3}} \right){\Phi _2}^*\,dz -}}\cr{M_4^{'}\left({1 - {M_5}} \right)\,\left({{a^2} + P_r^{'}{\sigma ^*}} \right)\int_0^1 {{\Phi _2}\left({{D^2} - {a^2}\,{M_3}} \right){\Phi _2}^*\,dz.}}\cr}

Integrating the various terms of Eq. (37) by parts, for a suitable number of times and making use of the boundary conditions in Eq. (30) and the equality 01ψ*D2nψdz=(1)n01|Dnψ|2dz, \int_0^1 {{\psi ^*}\,{D^{2n}}\,\psi dz\, = \,{{\left({- 1} \right)}^n}\,\int_0^1 {{{\left| {{D^n}\psi} \right|}^2}\,dz,}} where =w (n=1,2) or ψ=θ,ϕ,Φ1,Φ2 (n=1), we obtain 01(|D2w|2+2a2|Dw|2+a4|w|2)dz+σ01(|Dw|2++a2|w|2)dz=[1+M1(1M5)]01(|Dθ|2++a2|θ|2+Prσ*|θ|2)dzM1(1M5)01(|D2Φ1|2++a2M3|DΦ1|2)dzM1(1M5)(a2+Prσ*)01(|DΦ1|2+a2M3|Φ1|2)dz[1M1(11M5)]01(|Dϕ|2+a2|ϕ|2+Prσ*|ϕ|2)dz+M4(1M5)01(|D2Φ2|2+a2M3|DΦ2|2)dz+M4(1M5)(a2+Pr1σ*)01(|DΦ2|2+a2M3|Φ2|2)dz. \matrix{{\int_0^1 {\left({{{\left| {{D^2}w} \right|}^2}\, + \,2{a^2}{{\left| {Dw} \right|}^2} + {a^4}{{\left| w \right|}^2}} \right)} \,dz + \sigma \int_0^1 {\left({{{\left| {Dw} \right|}^2} +} \right.}}\cr{\left. {+ \,{a^2}{{\left| w \right|}^2}} \right)\,dz = \left[{1 + {M_1}\left({1 - {M_5}} \right)} \right]\int_0^1 {\left({{{\left| {D\theta} \right|}^2} +} \right.}}\cr{\left. {+ \,{a^2}{{\left| \theta\right|}^2} + {P_r}\,{\sigma ^*}{{\left| \theta\right|}^2}} \right)\,dz - {M_1}\left({1 - {M_5}} \right)\int_0^1 {\left({{{\left| {{D^2}\,{\Phi _1}} \right|}^2} +} \right.}}\cr{\left. {+ \,{a^2}{M_3}{{\left| {D{\Phi _1}} \right|}^2}} \right)\,dz - {M_1}\left({1 - {M_5}} \right)\,\left({{a^2} + {P_r}{\sigma ^*}} \right)}\cr{\int_0^1 {\left({{{\left| {D{\Phi _1}} \right|}^2} + {a^2}{M_3}{{\left| {{\Phi _1}} \right|}^2}} \right)dz - \left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]}}\cr{\int_0^1 {\left({{{\left| {D\phi} \right|}^2} + {a^2}{{\left| \phi\right|}^2} + P_r^{'}{\sigma ^*}{{\left| \phi\right|}^2}} \right)dz + M_4^{'}\left({1 -} \right.}}\cr{\left. {{M_5}} \right)\,\int_0^1 {\left({{{\left| {{D^2}\,{\Phi _2}} \right|}^2} + {a^2}\,{M_3}{{\left| {D{\Phi _2}} \right|}^2}} \right)dz + M_4^{'}\left({1 - {M_5}} \right)}}\cr{\left({{a^2} + P_r^1{\sigma ^*}} \right)\int_0^1 {\left({{{\left| {D{\Phi _2}} \right|}^2} + {a^2}\,{M_3}{{\left| {{\Phi _2}} \right|}^2}} \right)dz.}}\cr}

Equating the imaginary parts of both sides of Eq. (39) and cancelling σi (≠0) throughout from the resulting equation, we get 01(|Dw|2+a2|w|2)dz=Pr[1+M1(1M5])01|θ|2dz+M1(1M5)Pr01(|DΦ1|2++a2M3|Φ1|2)dz+[1M1(11M5)]Pr01|ϕ|2dzM4(1M5)Pr01(|DΦ2|2+a2M3|Φ2|2)dz. \matrix{{\int_0^1 {\left({{{\left| {Dw} \right|}^2} + {a^2}{{\left| w \right|}^2}} \right)dz =- {P_r}\left[{1 + {M_1}\left({1 -} \right.} \right.}}\cr{\left. {\left. {- {M_5}} \right]} \right)\,\int_0^1 {{{\left| \theta\right|}^2}dz + {M_1}\left({1 - {M_5}} \right){P_r}\int_0^1 {\left({{{\left| {D{\Phi _1}} \right|}^2} +} \right.}}}\cr{\left. {+ {a^2}{M_3}{{\left| {{\Phi _1}} \right|}^2}} \right)dz + \left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]\,P_r^{'}\,\int_0^1 {{{\left| \phi\right|}^2}\,dz -}}\cr{- M_4^{'}\left({1 - {M_5}} \right)P_r^{'}\,\int_0^1 {\left({{{\left| {D{\Phi _2}} \right|}^2} + {a^2}{M_3}{{\left| {{\Phi _2}} \right|}^2}} \right)\,dz.}}\cr}

Now, multiplying Eq. (26) by Φ1* and integrating over the vertical range of z, we get 01(|DΦ1|2+a2M3|Φ1|2)dz=01Φ1*Dθdz=01θDΦ1*dz|01θDΦ1*dz|01|θ||DΦ1*|dz01|θ||DΦ1|dz(01|θ|2dz)1/2(01|DΦ1|2dz)1/2(usingSchwartzinequality), \matrix{{\int_0^1 {\left({{{\left| {D{\Phi _1}} \right|}^2} + {a^2}{M_3}{{\left| {{\Phi _1}} \right|}^2}} \right)\,dz =- \int_0^1 {{\Phi _1}^*\,D\theta dz =} \int_0^1 {\theta \,D{\Phi _1}^*\,dz}}}\cr{\le \left| {\int_0^1 {\theta \,D{\Phi _1}^*\,dz}} \right|}\cr{\le \int_0^1 {\left| {\theta \,} \right|\left| {D{\Phi _1}^*} \right|dz}}\cr{\le \int_0^1 {\left| {\theta \,} \right|\left| {D{\Phi _1}} \right|dz}}\cr{\le {{\left({\int_0^1 {{{\left| {\theta \,} \right|}^2}dz}} \right)}^{1/2}}\,{{\left({\int_0^1 {{{\left| {D{\Phi _1}\,} \right|}^2}dz}} \right)}^{1/2}}\,\left({{\rm{using}}\,{\rm{Schwartz}}\,{\rm{inequality}}} \right),}\cr} which implies that 01|DΦ1|2dz(01|θ|2dz)1/2(01|DΦ1|2dz)1 \int_0^1 {{{\left| {D{\Phi _1}\,} \right|}^2}dz}\le \,{\left({\int_0^1 {{{\left| {\theta \,} \right|}^2}dz}} \right)^{1/2}}\,{\left({\int_0^1 {{{\left| {D{\Phi _1}\,} \right|}^2}dz}} \right)^1} and thus, (01|DΦ1|2dz)1/2(01|θ|2dz)1/2. {\left({\int_0^1 {{{\left| {D{\Phi _1}\,} \right|}^2}dz}} \right)^{1/2}}\, \le {\left({\int_0^1 {{{\left| {\theta \,} \right|}^2}dz}} \right)^{1/2}}.

Upon using a similar procedure, Eq. (27) yields (01|DΦ2|2dz)1/2(01|ϕ|2dz)1/2. {\left({\int_0^1 {{{\left| {D{\Phi _2}\,} \right|}^2}dz}} \right)^{1/2}}\, \le {\left({\int_0^1 {{{\left| {\phi \,} \right|}^2}dz}} \right)^{1/2}}.

Combining the inequalities in Eqs (41) and (42), we get 01(|DΦ1|2+a2M3|Φ1|2)dz01|θ|2dz. \int_0^1 {\left({{{\left| {D{\Phi _1}\,} \right|}^2} + {a^2}\,{M_{3\,}}\,{{\left| {{\Phi _1}} \right|}^2}} \right)} \,dz \le \int_0^1 {{{\left| {\theta \,} \right|}^2}dz}.

Now, multiplying Eq. (29) by its complex conjugate and integrating over the vertical range of z for an appropriate number of times and using the boundary conditions in Eq. (30), we obtain 01(|D2ϕ|2+2a2|Dϕ|2+a4|ϕ|2)dz++2σrPr01(|Dϕ|2+a2|ϕ|2)dz++Pr2|σ|201|ϕ|2dz=Rsa201|w|2dz. \matrix{{\int_0^1 {\left({{{\left| {{D^2}\phi} \right|}^2} + 2{a^2}{{\left| {D\phi} \right|}^2} + {a^4}{{\left| \phi\right|}^2}} \right)} \,dz +}\cr{+ 2{\sigma _r}P_r^{'}\int_0^1 {\left({{{\left| {D\phi} \right|}^2} + {a^2}{{\left| \phi\right|}^2}} \right)dz +}}\cr{+ P{{_r^{'}}^2}{{\left| \sigma\right|}^2}\int_0^1 {{{\left| \phi\right|}^2}\,dz = {R_s}{a^2}\,\int_0^1 {{{\left| w \right|}^2}} dz.}}\cr}

Since σr≥0 , it follows from Eq. (45) that 01|ϕ|2dz<Rsa2Pr2|σ|201|w|2dz. \int_0^1 {{{\left| \phi\right|}^2}dz < {{{R_s}{a^2}} \over {P{{_r^{'}}^2}{{\left| \sigma\right|}^2}}}} \int_0^1 {{{\left| w \right|}^2}dz.}

Using the inequalities in Eqs (44) and (46) in Eq. (40), we get 01|Dw|2dz+a2[1Rs[1M1(11M5)]|σ|2Pr]01|w|2dz++Pr01|θ|2dz+M4(1M5)Pr01(|DΦ2|2++a2M3|Φ2|2)dz<0, \matrix{{\int_0^1 {{{\left| {Dw} \right|}^2}dz + {a^2}\left[{1 - {{{R_s}\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {{{\left| \sigma\right|}^2}\,P_r^{'}}}} \right]} \int_0^1 {{{\left| w \right|}^2}dz +}}\cr{+ {P_r}\,\int_0^1 {{{\left| \theta\right|}^2}\,dz}+ M_4^{'}\left({1 - {M_5}} \right)P_r^{'}\int_0^1 {\left({{{\left| {D{\Phi _2}} \right|}^2} +} \right.}}\cr{\left. {+ {a^2}\,{M_3}{{\left| {{\Phi _2}} \right|}^2}} \right)dz < 0,}\cr} which clearly implies that |σ|<Rs[1M1(11M5)]Pr. \left| \sigma\right| < \sqrt {{{{R_s}\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {P_r^{'}}}.}

This completes the proof of the result.

The above theorem, from the physical point of view, states that the complex growth rate of an arbitrary oscillatory motion of neutral or growing amplitude in ferrothermohaline convection, for the case of free boundaries, must lie inside a semicircle in the right half of the σrσi-plane, whose center is at the origin and radius=Rs[1M1(11M5)]Pr. {\rm{radius}} = \sqrt {{{{R_s}\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {P_r^{'}}}.}

Theorem 2

If R>0, Rs>0, M1>0, M1>0, 1-M5>0, Pr>0, Pr>0,. σr≥0, and σi≠0, then a necessary condition for the existence of a nontrivial solution (w, θ, ϕ, Φ1, Φ2, σ) of Eqs (23) and (26)(29) together with the boundary conditions in Eq. (31) is that |σ|2σi2<{.RM1(1M5)Pr+RsPr(1+M1|11M5|M1(11M5))}2. {\left| \sigma\right|^2}\sigma _i^2 < {\left\{{{{.R\,{M_1}\left({1 - {M_5}} \right)} \over {{P_r}}} + {{{R_s}} \over {P_r^{'}}}\left({1 + M_1^{'}\left| {1 - {1 \over {{M_5}}}} \right| - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right)} \right\}^2}.

Proof

Multiplying Eq. (23) by w* throughout and integrating the resulting equation over the vertical range of z, we get 01w*(D2a2)(D2a2σ)wdz==aR1/2(1+M1M4)01w*θdzaR1/2(M1M4)01w*DΦ1dzaRs1/2(1M1+M4)01w*ϕdz+aRs1/2(M4M1)01w*DΦ2dz. \matrix{{\int_0^1 {{w^*}\left({{D^2} - {a^2}} \right)\left({{D^2} - {a^2} - \sigma} \right)w\,dz =}}\cr{= a{R^{1/2}}\left({1 + {M_1} - {M_4}} \right)\int_0^1 {{w^*}\,\theta \,dz -}}\cr{- a{R^{1/2}}\left({{M_1} - {M_4}} \right)\,\int_0^1 {{w^*}\,D{\Phi _1}\,dz - a{R_s}^{1/2}\,\left({1 - M_1^{'} +} \right.}}\cr{\left. {M_4^{'}} \right)\,\int_0^1 {{w^*}\,\phi \,dz + a{R_s}^{1/2}\,\left({M_4^{'} - M_1^{'}} \right)\,\int_0^1 {{w^*}\,D{\Phi _2}\,dz.}}}\cr}

Using Eqs (28) and (29), we can write aR1/2(1+M1M4)01w*θdz==[1+M1(1M5)]01θ(D2a2Prσ*)θ*dz, \matrix{{a{R^{1/2}}\left({1 + {M_1} - {M_4}} \right)\int_0^1 {{w^*}} \theta \,dz =}\cr{=- \left[{1 + {M_1}\left({1 - {M_5}} \right)} \right]\int_0^1 \theta\left({{D^2} - {a^2} - {P_r}{\sigma ^*}} \right){\theta ^*}\,dz,}\cr} and aRs1/2(1M1+M4)01w*ϕdz==[1M1(11M5)]01ϕ(D2a2Prσ*)ϕ*dz. \matrix{{- a{R_s}^{1/2}\left({1 - M_1^{'} + M_4^{'}} \right)\int_0^1 {{w^*}} \phi \,dz =}\cr{= \left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]\int_0^1 \phi\left({{D^2} - {a^2} - P_r^{'}{\sigma ^*}} \right){\phi ^*}\,dz.}\cr}

Combining Eqs (48)(50), we obtain 01w*(D2a2)(D2a2σ)wdz==[1+M1(1M5)]01θ(D2a2Prσ*)θ*dzaR1/2M1(1M5)01w*DΦ1dz+[1M1(11M5)]01ϕ(D2a2Prσ*)ϕ*dzaRs1/2M1(11M5)01w*DΦ2dz. \matrix{{\int_0^1 {{w^*}\left({{D^2} - {a^2}} \right)\left({{D^2} - {a^2} - \sigma} \right)w\,dz =}}\cr{=- \left[{1 + {M_1}\left({1 - {M_5}} \right)} \right]\int_0^1 {\theta \left({{D^2} - {a^2} - {P_r}{\sigma ^*}} \right){\theta ^*}\,dz -}}\cr{- a{R^{1/2}}\,{M_1}\left({1 - {M_5}} \right)\int_0^1 {{w^*}\,D{\Phi _1}\,dz + \left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]}}\cr{\int_0^1 {\phi \left({{D^2} - {a^2} - P_r^{'}{\sigma ^*}} \right){\phi ^*}\,dz - a{R_s}^{1/2}\,M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)\int_0^1 {{w^*}\,D{\Phi _2}\,dz.}}}\cr}

Integrating the various terms of Eq. (51) by parts, for an appropriate number of times and making use of the boundary conditions in Eq. (31) and equality in Eq. (38), we obtain 01(|D2w|2+2a2|Dw|2+a4|w|2)dz++σ01(|Dw|2+a2|w|2)dz=[1+M1(1M5)]01(|Dθ|2+a2|θ|2+Prσ*|θ|2)dzaR1/2M1(1M5)01w*DΦ1dz[1M1(11M5)]01(|Dϕ|2+a2|ϕ|2+Prσ*|ϕ|2)dzaRs12M1(11M5)01w*DΦ2dz. \matrix{{\int_0^1 {\left({{{\left| {{D^2}w} \right|}^2} + 2{a^2}{{\left| {Dw} \right|}^2} + {a^4}{{\left| w \right|}^2}} \right)dz +}} \cr {+ \sigma \int_0^1 {\left({{{\left| {Dw} \right|}^2} + {a^2}{{\left| w \right|}^2}} \right)dz = \left[ {1 + {M_1}\left({1 -} \right.} \right.}} \cr {\left. {\left. {- {M_5}} \right)} \right]\int_0^1 {\left({{{\left| {D\theta} \right|}^2} + {a^2}{{\left| \theta \right|}^2} + {P_r}{\sigma ^*}{{\left| \theta \right|}^2}} \right)dz -}} \cr {a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)\,\int_0^1 {{w^*}\,D{\Phi _1}\,dz - \left[ {1 - M_1^{'}\left({1 -} \right.} \right.}} \cr {\left. {\left. {- {1 \over {{M_5}}}} \right)} \right]\int_0^1 {\left({{{\left| {D\phi} \right|}^2} + {a^2}{{\left| \phi \right|}^2} + P_r^{'}{\sigma ^*}{{\left| \phi \right|}^2}} \right)dz -}} \cr {- a{R_s}^{1/2}\,M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)\int_0^1 {{w^*}\,D{\Phi _2}dz.}} \cr}

Equating the imaginary parts on both sides of Eq. (52) and dividing the resulting equation by σi (≠0), we get 01(|Dw|2+a2|w|2)dz=[1+M1(1M5)]Pr01|θ|2dzaR1/2M1(1M5)σiimaginarypartof01w*DΦ1dz+[1M1(11M5)]Pr01|ϕ|2dzaRs12M1(11M5)σiimaginarypartof01w*DΦ2dz. \matrix{{\int_0^1 {\left({{{\left| {Dw} \right|}^2} + {a^2}{{\left| w \right|}^2}} \right)dz =}} \cr {- \left[ {1 + {M_1}\left({1 - {M_5}} \right)} \right]{P_r}\int_0^1 {{{\left| \theta \right|}^2}dz - {{a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)} \over {{\sigma _i}}}\,{\rm{imaginary}}}} \cr {{\rm{part}}\,{\rm{of}}\,\int_0^1 {{w^*}\,D{\Phi _1}\,dz + \left[ {1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]P_r^{'}\int_0^1 {{{\left| \phi \right|}^2}\,dz -}}} \cr {- {{a{R_s}^{1/2}M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \over {{\sigma _i}}}{\rm{imaginary}}\,{\rm{part}}\,{\rm{of}}\,\int_0^1 {{w^*}\,D{\Phi _{2\,}}\,dz.}} \cr}

Now multiplying Eq. (28) by its complex conjugate and integrating over the vertical range of z by parts, for a suitable number of times, by making use of the boundary conditions in Eq. (31) and then by equating the real parts on both sides, we obtain 01(|D2θ|2+2a2|Dθ|2+a4|θ|2)dz++2σrPr01(|Dθ|2+a2|θ|2)dz++|σ|2Pr201|θ|2dz=a2R01|w|2dz. \matrix{{\int_0^1 {\left({{{\left| {{D^2}\theta} \right|}^2} + 2{a^2}{{\left| {D\theta} \right|}^2} + {a^4}{{\left| \theta\right|}^2}} \right)dz +}}\cr{+ 2{\sigma _r}{P_r}\int_0^1 {\left({{{\left| {D\theta} \right|}^2} + {a^2}{{\left| \theta\right|}^2}} \right)dz +}}\cr{+ {{\left| \sigma\right|}^2}{P_r}^2\int_0^1 {{{\left| \theta\right|}^2}dz = {a^2}R\int_0^1 {{{\left| w \right|}^2}dz.\,} \,}}\cr}

Since σr≥0, it follows from Eq. (54) that 01|θ|2dz.a2RPr2|σ|201|w|2dz. \int_0^1 {{{\left| \theta\right|}^2}\,dz \le {{.{a^2}R} \over {P_r^2{{\left| \sigma\right|}^2}}}} \int_0^1 {{{\left| w \right|}^2}\,dz.}

Combining the inequalities in Eqs (42) and (55), we obtain (01|DΦ1|2dz)1/2aR1/2Pr|σ|(01|w|2dz)1/2. {\left({\int_0^1 {{{\left| {D{\Phi _1}} \right|}^2}\,dz}} \right)^{1/2}} \le {{a{R^{1/2}}} \over {{P_r}\left| \sigma\right|}}{\left({\int_0^1 {{{\left| w \right|}^2}\,dz}} \right)^{1/2}}.

On similar lines, from the inequalities in Eqs (43) and (46), we obtain (01|DΦ2|2dz)1/2aRs12Pr|σ|(01|w|2dz)1/2. {\left({\int_0^1 {{{\left| {D{\Phi _2}} \right|}^2}\,dz}} \right)^{1/2}} \le {{aR_s^{^{1/2}}} \over {P_r^{'}\left| \sigma \right|}}{\left({\int_0^1 {{{\left| w \right|}^2}\,dz}} \right)^{1/2}}.

Now aR1/2M1(1M5)σi - {{a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)} \over {{\sigma _i}}} imaginary part of 01w*DΦ1dz \int_0^1 {{w^*}\,D{\Phi _1}\,dz} aR1/2M1(1M5)|1σi01w*DΦ1dz|.aR1/2M1(1M5)|σi|01|w*DΦ1|dzaR1/2M1(1M5)|σi|01|w||DΦ1|dzaR1/2M1(1M5)|σi|(01|w|2dz)1/2(01|DΦ1|2dz)1/2(usingSchwartzinequality)a2RM1(1M5)Pr.|σ||σi|01|w|2dz(utilizingtheinequalityinEq.(56)). \matrix{{\le a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)\left| {{1 \over {{\sigma _i}}}\int_0^1 {{w^*}D{\Phi _1}\,dz}} \right|}\cr{\le.{{a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)} \over {\left| {{\sigma _i}} \right|}}\int_0^1 {\left| {{w^*}D{\Phi _1}} \right|\,dz}}\cr{\le {{a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)} \over {\left| {{\sigma _i}} \right|}}\int_0^1 {\left| w \right|\left| {D{\Phi _1}} \right|\,dz}}\cr{\le {{a{R^{1/2}}{M_1}\left({1 - {M_5}} \right)} \over {\left| {{\sigma _i}} \right|}}{{\left({\int_0^1 {{{\left| w \right|}^2}\,dz}} \right)}^{1/2}}{{\left({\int_0^1 {{{\left| {D{\Phi _1}} \right|}^2}\,dz}} \right)}^{1/2}}}\cr{\left({{\rm{using}}\,{\rm{Schwartz}}\,{\rm{inequality}}} \right)}\cr{\le \,{{{a^2}R{M_1}\left({1 - {M_5}} \right)} \over {{P_r}.\left| \sigma\right|\left| {{\sigma _i}} \right|}}\int_0^1 {{{\left| w \right|}^2}\,dz}}\cr{\left({{\rm{utilizing}}\,{\rm{the}}\,{\rm{inequality}}\,{\rm{in}}\,{\rm{Eq}}.\,\left({56} \right)} \right).}\cr}

Further, aRs12M1(11M5)σi - {{aR_s^{1/2}M_1^{'}\left( {1 - {1 \over {{M_5}}}} \right)} \over {{\sigma _i}}} imaginary part of 01w*DΦ2dz \int_0^1 {{w^*}\,D{\Phi _2}\,dz} aRs12M1|11M5||σi||01w*DΦ2dz|aRs12M1|11M5||σi|01|w||DΦ2|dzaRs12M1|11M5||σi|(01|w|2dz)1/2(01|DΦ2|2dz)1/2(usingSchwartzinequality)a2RsM1|11M5|Pr.|σ||σi|01|w|2dz(utilizingtheinequalityinEq.(57)). \matrix{{\le {{aR_s^{1/2}M_1^{'}\left| {1 - {1 \over {{M_5}}}} \right|} \over {\left| {{\sigma _i}} \right|}}\left| {\int_0^1 {{w^*}D{\Phi _2}\,dz}} \right|} \cr {\le {{aR_s^{1/2}M_1^{'}\left| {1 - {1 \over {{M_5}}}} \right|} \over {\left| {{\sigma _i}} \right|}}\int_0^1 {\left| w \right|\left| {D{\Phi _2}} \right|dz}} \cr {\le {{aR_s^{1/2}M_1^{'}\left| {1 - {1 \over {{M_5}}}} \right|} \over {\left| {{\sigma _i}} \right|}}{{\left( {\int_0^1 {{{\left| w \right|}^2}dz}} \right)}^{1/2}}{{\left( {\int_0^1 {{{\left| {D{\Phi _2}} \right|}^2}dz}} \right)}^{1/2}}} \cr {\left( {{\rm{using}}\,{\rm{Schwartz}}\,{\rm{inequality}}} \right)} \cr {\le {{{a^2}{R_s}M_1^{'}\left| {1 - {1 \over {{M_5}}}} \right|} \over {P_r^{'}.\left| \sigma \right|\left| {{\sigma _i}} \right|}}\int_0^1 {{{\left| w \right|}^2}dz}} \cr {\left( {{\rm{utilizing}}\,{\rm{the}}\,{\rm{inequality}}\,{\rm{in}}\,{\rm{Eq}}.\,\left( {57} \right)} \right).} \cr}

Multiplying Eq. (29) by ϕ* and integrating the resulting equation by parts, for an appropriate number of times over the vertical range of z, and then from the imaginary part of the final equation, we obtain 01|ϕ|2dz=1σiimaginarypartofaRs12Pr01ϕ*wdz. \int_0^1 {{{\left| \phi \right|}^2}dz = {1 \over {{\sigma _i}}}\,} {\rm{imaginary}}\,{\rm{part}}\,{\rm{of}}\,{{aR_s^{1/2}} \over {P_r^{'}}}\int_0^1 {{\phi ^*}wdz.} aRs12|σi|Pr|01ϕ*wdz|.aRs12|σi|Pr*01|ϕ||w|dz.aRs12|σi|Pr(01|ϕ|2dz)12(01|w|2dz)12.(usingSchwartzinequality)a2Rs|σ||σi|Pr201|w|2dz(utilizingtheinequalityinEq.(46)). \matrix{{\le {{aR_s^{1/2}} \over {\left| {{\sigma _i}} \right|P_r^{'}}}\left| {\int_0^1 {{\phi ^*}wdz}} \right|.} \cr {\le {{aR_s^{1/2}} \over {\left| {{\sigma _i}} \right|P_r^{{'}*}}}\int_0^1 {\left| \phi \right|\left| w \right|dz.}} \cr {\le {{aR_s^{1/2}} \over {\left| {{\sigma _i}} \right|P_r^{'}}}{{\left({\int_0^1 {{{\left| \phi \right|}^2}dz}} \right)}^{{1 \over 2}}}{{\left({\int_0^1 {{{\left| w \right|}^2}dz}} \right)}^{{1 \over 2}}}.} \cr {\left({{\rm{using}}\,{\rm{Schwartz}}\,{\rm{inequality}}} \right)} \cr {\le {{{a^2}{R_s}} \over {\left| \sigma \right|\left| {{\sigma _i}} \right|P_r^{{'}2}}}\int_0^1 {{{\left| w \right|}^2}dz}} \cr {\left({{\rm{utilizing}}\,{\rm{the}}\,{\rm{inequality}}\,{\rm{in}}\,{\rm{Eq}}.\,\left({46} \right)} \right).} \cr}

Thus, utilizing the inequalities in Eqs (58)(60) in Eq. (53), we finally obtain 01|Dw|2dz+a2(1RM1(1M5)Pr|σ||σi|RsM1(11M5)Pr|σ||σi|Rs[1M1(11M5)]|σ||σi|Pr)01|w|2dz++[1+M1(1M5)]Pr01|θ|2dz0, \matrix{{\int_0^1 {{{\left| {Dw} \right|}^2}dz + {a^2}\left({1 - {{R\,{M_1}\left({1 - {M_5}} \right)} \over {{P_r}\left| \sigma\right|\left| {{\sigma _i}} \right|}} - {{{R_s}\,M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \over {P_r^{'}\left| \sigma\right|\left| {{\sigma _i}} \right|}} -} \right.}}\cr{\left. {- {{{R_s}\,\left[{1 - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right]} \over {\left| \sigma\right|\left| {{\sigma _i}} \right|P_r^{'}}}} \right)\int_0^1 {{{\left| w \right|}^2}\,dz +}}\cr{+ \left[{1 + {M_1}\left({1 - {M_5}} \right)} \right]{P_r}\int_0^1 {{{\left| \theta\right|}^2}\,dz \le 0,}}\cr} which clearly implies that |σ|2σi2.<{RMi(1M5)Pr+RsPr(1+M1|11M5|M1(11M5))}2. \matrix{{{{\left| \sigma\right|}^2}\sigma _i^{2.} < \left\{{{{R\,{M_i}\left({1 - {M_5}} \right)} \over {{P_r}}}} \right. + {{{R_s}} \over {P_r^{'}}}\left({1 + M_1^{'}\left| {1 -} \right.} \right.}\cr{{{\left. {\left. {\left. {- {1 \over {{M_5}}}} \right| - M_1^{'}\left({1 - {1 \over {{M_5}}}} \right)} \right)} \right\}}^2}.}\cr}

The above theorem may be stated, from a physical point of view, as: the complex growth rate of an arbitrary oscillatory perturbation of growing amplitude in ferrothermohaline convection, for the case of rigid boundaries, must lie inside the region represented by the inequality in Eq. (61).

Note: It may be noted that the parametric value M5, which represents the ratio of salinity effect on magnetic field to pyromagnetic coefficient, varies between 0.1 and 0.5 for most of the ferrofluids which are formed by changing ferric oxides and carrier organic fluids like kerosene, alcohol, hydrocarbon, etc. (Finlayson [2] and Gupta and Gupta [3]), so that the condition 1-M5>0, and hence, 1-(1/M5) <0 remain valid.

Conclusion

The linear stability theory has been used to derive the bounds for the complex growth rates in ferrothermohaline convection heated and salted from below in the presence of a uniform vertical magnetic field. Further, the results derived herein involve only dimensionless quantities and are wave number independent; thus, the present results are of uniform validity and applicability.

Figure 1

Geometrical configuration of the problem.
Geometrical configuration of the problem.

Banerjee M.B., Katoch D.C., Dube G.S., Banerjee, K. (1981), Bounds for growth rate of perturbation in thermohaline convection, Proc. Roy. Soc. London A, 378, 301–304. BanerjeeM.B. KatochD.C. DubeG.S. BanerjeeK. 1981 Bounds for growth rate of perturbation in thermohaline convection Proc. Roy. Soc. London A 378 301 304 10.1098/rspa.1981.0153 Search in Google Scholar

Finlayson B.A. (1970), Convective instability of ferromagnetic fluids, J. Fluid Mech., 40, 753–767. FinlaysonB.A. 1970 Convective instability of ferromagnetic fluids J. Fluid Mech. 40 753 767 10.1017/S0022112070000423 Search in Google Scholar

Gupta M.D., Gupta A.S. (1979), Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis, Int. J. Eng. Sci., 17, 271–277. GuptaM.D. GuptaA.S. 1979 Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis Int. J. Eng. Sci. 17 271 277 10.1016/0020-7225(79)90090-9 Search in Google Scholar

Gupta J.R., Sood.S.K., Shandil.R.G., Banerjee M.B., Banerjee K. (1983), Bounds for the growth of a perturbation in some double-diffusive convection problems, J. Aust. Math. Soc. Ser. B, 25, 276–285. GuptaJ.R. SoodS.K. ShandilR.G. BanerjeeM.B. BanerjeeK. 1983 Bounds for the growth of a perturbation in some double-diffusive convection problems J. Aust. Math. Soc. Ser. B 25 276 285 10.1017/S0334270000004069 Search in Google Scholar

Lalas D.P., Carmi S. (1971), Thermoconvective stability of ferrofluids, Phys. Fluids, 14(2), 436–437. LalasD.P. CarmiS. 1971 Thermoconvective stability of ferrofluids Phys. Fluids 14 2 436 437 10.1063/1.1693446 Search in Google Scholar

Nataraj R., Bhavya S. (2019), Effect of Exponentially Temperature-Dependent Viscosity on the Onset of Penetrative Ferro-Thermal-Convection in a Saturated Porous Layer via Internal Heating, Journal of Electromagnetic Analysis and Applications, 11, 101–116. NatarajR. BhavyaS. 2019 Effect of Exponentially Temperature-Dependent Viscosity on the Onset of Penetrative Ferro-Thermal-Convection in a Saturated Porous Layer via Internal Heating Journal of Electromagnetic Analysis and Applications 11 101 116 10.4236/jemaa.2019.117007 Search in Google Scholar

Odenbach S. (2002), Ferrofluids: Magnetically controllable fluids and their applications, Springer-Verlag, Berlin, Heidelberg. OdenbachS. 2002 Ferrofluids: Magnetically controllable fluids and their applications Springer-Verlag Berlin, Heidelberg 10.1007/3-540-45646-5 Search in Google Scholar

Odenbach S. (2002a), Magnetoviscous effects in ferrofluids, Springer-Verlag, Berlin, Heidelberg. OdenbachS. 2002a Magnetoviscous effects in ferrofluids Springer-Verlag Berlin, Heidelberg 10.1007/3-540-45646-5_10 Search in Google Scholar

Prakash J. (2012), On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer, J. Magn. Magn. Mater. 324(8), 1523–1527. PrakashJ. 2012 On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer J. Magn. Magn. Mater. 324 8 1523 1527 10.1016/j.jmmm.2011.11.058 Search in Google Scholar

Prakash J. (2013), On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer, J. Porous Media, 16(3), 217–226. PrakashJ. 2013 On arresting the complex growth rates in ferromagnetic convection in a ferrofluid saturated porous layer J. Porous Media 16 3 217 226 10.1615/JPorMedia.v16.i3.40 Search in Google Scholar

Prakash J., and Gupta S. (2013), On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer, J. Magn. Magn. Mater. 345, 201–207. PrakashJ. GuptaS. 2013 On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer J. Magn. Magn. Mater. 345 201 207 10.1016/j.jmmm.2013.06.025 Search in Google Scholar

Prakash J. (2014), On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer, J. Appl. Fluid Mech. 7(1), 147–154. PrakashJ. 2014 On exchange of stabilities in ferromagnetic convection in a rotating ferrofluid saturated porous layer J. Appl. Fluid Mech. 7 1 147 154 10.36884/jafm.7.01.19347 Search in Google Scholar

Prakash J., Vaid K., Bala R. (2014), Upper limits to the complex growth rates in triply diffusive convection, Proc. Indian Nat. Sci. Acad., 80(1), 115–122. PrakashJ. VaidK. BalaR. 2014 Upper limits to the complex growth rates in triply diffusive convection Proc. Indian Nat. Sci. Acad. 80 1 115 122 10.16943/ptinsa/2014/v80i1/55090 Search in Google Scholar

Prakash J., Bala R., Kumari K. (2017), Upper bounds for the complex growth rates in ferromagnetic convection in a rotating porous medium: Darcy-Brinkman Model, Bull. Cal. Math. Soc. 109(2), 153–170. PrakashJ. BalaR. KumariK. 2017 Upper bounds for the complex growth rates in ferromagnetic convection in a rotating porous medium: Darcy-Brinkman Model Bull. Cal. Math. Soc. 109 2 153 170 Search in Google Scholar

Prakash J., Kumar R., Kumari K. (2017a), Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied, Studia Geotech. et Mech. 39(3), 39–46. PrakashJ. KumarR. KumariK. 2017a Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity: A correction applied Studia Geotech. et Mech. 39 3 39 46 10.1515/sgem-2017-0028 Search in Google Scholar

Rahman, H., and Suslov S.A. (2015), Thermomagnetic convection in a layer of ferrofluids placed in a uniform oblique external magnetic field, J. Fluid Mech. 764, 316–348. RahmanH. SuslovS.A. 2015 Thermomagnetic convection in a layer of ferrofluids placed in a uniform oblique external magnetic field J. Fluid Mech. 764 316 348 10.1017/jfm.2014.709 Search in Google Scholar

Rosensweig R.E., Zahn M., Volger T. (1978), Stabilization of fluid penetration through a porous medium using magnetisable fluids, in: Thermomechanics of magnetic fluids (Ed. B. Berkovsky), Hemisphere, Washington, DC, 195–211. RosensweigR.E. ZahnM. VolgerT. 1978 Stabilization of fluid penetration through a porous medium using magnetisable fluids in: Thermomechanics of magnetic fluids Ed. BerkovskyB. Hemisphere Washington, DC 195 211 Search in Google Scholar

Rosensweig. R. E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge. RosensweigR. E. 1985 Ferrohydrodynamics Cambridge University Press Cambridge Search in Google Scholar

Sekar. R. and Vaidyanathan G. (1993), Convective instability of a magnetized ferrofluid in a rotating porous medium, Int. J. Eng. Sci. 31, 1139–1150. SekarR. VaidyanathanG. 1993 Convective instability of a magnetized ferrofluid in a rotating porous medium Int. J. Eng. Sci. 31 1139 1150 10.1016/0020-7225(93)90087-B Search in Google Scholar

Sekar R., Vaidyanathan G., Ramanathan A. (1993), The ferroconvection in fluids saturating a rotating densely packed porous medium, Int. J. Eng. Sci. 13, 241–250. SekarR. VaidyanathanG. RamanathanA. 1993 The ferroconvection in fluids saturating a rotating densely packed porous medium Int. J. Eng. Sci. 13 241 250 10.1016/0020-7225(93)90037-U Search in Google Scholar

Sekar R., Vaidyanathan G., Ramanathan A. (1996), Ferroconvection in an anisotropic porous medium, Int. J. Engng. Sci. 34(4), 399–405. SekarR. VaidyanathanG. RamanathanA. 1996 Ferroconvection in an anisotropic porous medium Int. J. Engng. Sci. 34 4 399 405 10.1016/0020-7225(95)00113-1 Search in Google Scholar

Sekar R., Vaidyanathan G., Ramanathan A. (2000), Effect of rotation on ferrothermohaline convection, J. Magn. Magn. Mater. 218, 266–272. SekarR. VaidyanathanG. RamanathanA. 2000 Effect of rotation on ferrothermohaline convection J. Magn. Magn. Mater. 218 266 272 10.1016/S0304-8853(00)00358-9 Search in Google Scholar

Sekar R., Raju K., Vasanthakumari R. (2013), A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium, J. Magn. Magn. Mater. 331, 122–128. SekarR. RajuK. VasanthakumariR. 2013 A linear analytical study on Soret-driven ferrothermohaline convection in an anisotropic porous medium J. Magn. Magn. Mater. 331 122 128 10.1016/j.jmmm.2012.10.028 Search in Google Scholar

Sekar, R. and Raju K. (2015), Effect of sparse distribution pores in thermohaline convection in a micropolar ferromagnetic fluid, J. Appl. Fluid Mech., 8(4), 899–910. SekarR. RajuK. 2015 Effect of sparse distribution pores in thermohaline convection in a micropolar ferromagnetic fluid J. Appl. Fluid Mech. 8 4 899 910 10.18869/acadpub.jafm.67.223.23735 Search in Google Scholar

Sekar R., and Murugan D. (2018), Stability analysis of ferrothermohaline convection in a Darcy porous medium with Soret and MFD viscosity effects, Tecnica Italiana-Ita. J. Engng. Sci. 61+1(2), 151–161. SekarR. MuruganD. 2018 Stability analysis of ferrothermohaline convection in a Darcy porous medium with Soret and MFD viscosity effects Tecnica Italiana-Ita. J. Engng. Sci. 61+1 2 151 161 10.18280/ti-ijes.620214 Search in Google Scholar

Shliomis M. I. (1974), Magnetic Fluids, Sov. Phys. Uspekhi, 17, 153–169. ShliomisM. I. 1974 Magnetic Fluids Sov. Phys. Uspekhi. 17 153 169 10.1070/PU1974v017n02ABEH004332 Search in Google Scholar

Sunil, Bharti P.K., Sharma R.C. (2004), Thermosolutal convection in ferromagnetic fluid, Arch. Mech., 56(2), 117–135. SunilBharti P.K. SharmaR.C. 2004 Thermosolutal convection in ferromagnetic fluid Arch. Mech. 56 2 117 135 Search in Google Scholar

Sunil, Divya, and Sharma R.C. (2004a), Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium, J. Geophys. Eng., 1, 116–127. SunilDivya SharmaR.C. 2004a Effect of rotation on ferromagnetic fluid heated and soluted from below saturating a porous medium J. Geophys. Eng. 1 116 127 10.1088/1742-2132/1/2/003 Search in Google Scholar

Vaidyanathan G., Sekar R., Balasubramanian R. (1991), Ferroconvective instability of fluids saturating a porous medium, Int. J. Engng. Sci., 29, 1259–1267. VaidyanathanG. SekarR. BalasubramanianR. 1991 Ferroconvective instability of fluids saturating a porous medium Int. J. Engng. Sci. 29 1259 1267 10.1016/0020-7225(91)90029-3 Search in Google Scholar

Vaidyanathan G., Sekar R., Ramanathan A. (1995), Ferro thermohaline convection in a porous medium, J. Magn. Magn. Mater. 149, 137–142. VaidyanathanG. SekarR. RamanathanA. 1995 Ferro thermohaline convection in a porous medium J. Magn. Magn. Mater. 149 137 142 10.1016/0304-8853(95)00356-8 Search in Google Scholar

Vaidyanathan G., Sekar R., Ramanathan A. (1997), Ferrothermohaline convection, J. Magn. Magn. Mater. 176, 321–330. VaidyanathanG. SekarR. RamanathanA. 1997 Ferrothermohaline convection J. Magn. Magn. Mater. 176 321 330 10.1016/S0304-8853(97)00468-X Search in Google Scholar

Recommended articles from Trend MD