Open Access

Numerical Comparison of Thermal Behaviour Between Ventilated Facades


Cite

ANSYS Fluent Theory Guide.ANSYS Fluent Theory GuideSearch in Google Scholar

ANSYS Fluent User’s Guide.ANSYS Fluent User’s GuideSearch in Google Scholar

Chen Q. (1995). Comparison of different κ −ɛ models for indoor airflow computations. Numerical Heat Transfer, Part B, 28: p. 353–369.ChenQ.1995Comparison of different κ −ɛ models for indoor airflow computationsNumerical Heat Transfer, Part B2835336910.1080/10407799508928838Search in Google Scholar

Chereches, M., Chereches, N. C., Hudisteanu, S. (2015). Numerical modeling of solar radiation inside ventilated double-skin facades. International journal of heat and technology vol. 33, No.4, p. 246–254.CherechesM.CherechesN. C.HudisteanuS.2015Numerical modeling of solar radiation inside ventilated double-skin facadesInternational journal of heat and technology334246254Search in Google Scholar

Chereches M., Chereches N. C., Hudisteanu S. (2014) The influence of different flow velocities on the heat transfer inside a ventilated façade. Revista Romana de Inginerie Civila, Volumul 5, Numeral 1.CherechesM.CherechesN. C.HudisteanuS.2014The influence of different flow velocities on the heat transfer inside a ventilated façadeRevista Romana de Inginerie Civila51Search in Google Scholar

Chui E.H., Raithby G.D. (1993). Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume method. Numerical Heat Transfer, Part B 23, p. 269–288.ChuiE.H.RaithbyG.D.1993Computation of radiant heat transfer on a non-orthogonal mesh using the finite-volume methodNumerical Heat Transfer, Part B2326928810.1080/10407799308914901Search in Google Scholar

Cirillo L., Di Ronza D., Fardella V., Manca O., Nardini S. (2015). Numerical and experimental investigations on a solar chimney integrated in a building façade. International Journal of Heat and Technology 33(4), p. 246–254. doi: 10.18280/ijht.330433CirilloL.Di RonzaD.FardellaV.MancaO.NardiniS.2015Numerical and experimental investigations on a solar chimney integrated in a building façadeInternational Journal of Heat and Technology33424625410.18280/ijht.330433Open DOISearch in Google Scholar

EN 1991-1-5: Eurocode 1: Actions on structures - Part 1–5: General actions - Thermal actionsEN 1991-1-5Eurocode 1: Actions on structures - Part 1–5: General actions - Thermal actionsSearch in Google Scholar

EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layer.EOTA ETAG 034 Part 2: Cladding Kits comprising Cladding components, associated fixings, subframe and possible insulation layerSearch in Google Scholar

Gagliano A., Nocera F., Aneli S. (2016) Thermodynamic analysis of ventilated facades under different wind conditions in summer period. Energy and Buildings 122, p. 131–139.GaglianoA.NoceraF.AneliS.2016Thermodynamic analysis of ventilated facades under different wind conditions in summer periodEnergy and Buildings12213113910.1016/j.enbuild.2016.04.035Search in Google Scholar

González M., Blanco E., Río J.L., Pistono J., San Juan C. (2008). Numerical study on thermal and fluid dynamic behaviour of an open-joint ventilated facade. PLEA 2008 – 25th Conference on Passive and Low Energy Architecture, 22–24 October, Dublin, Ireland.GonzálezM.BlancoE.RíoJ.L.PistonoJ.San JuanC.2008Numerical study on thermal and fluid dynamic behaviour of an open-joint ventilated facadePLEA 2008 – 25th Conference on Passive and Low Energy Architecture22–24 OctoberDublin, IrelandSearch in Google Scholar

Griffith, B. (2006). A model for naturally ventilated cavities on the exteriors of opaque building envelopes. Presented at Simbuild 2006 Conference, Cambridge-Massachusetts, USA.GriffithB.2006A model for naturally ventilated cavities on the exteriors of opaque building envelopesPresented at Simbuild 2006 ConferenceCambridge-Massachusetts, USASearch in Google Scholar

Information from the web site: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (date of issue 17-02-2020).Information from the web sitehttps://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview#Final_energy_consumption (date of issue 17-02-2020).Search in Google Scholar

Ibañez-Puy M., Vidaurre-Arbizu M., Sacristán-Fernández J. A., Martín-Gómez, C. (2017). Opaque Ventilated Façades: Thermal and energy performance review. Renewable and Sustainable Energy Reviews, Volume 79, p. 180–191. doi: 10.1016/j.rser.2017.05.059.Ibañez-PuyM.Vidaurre-ArbizuM.Sacristán-FernándezJ. A.Martín-GómezC.2017Opaque Ventilated Façades: Thermal and energy performance reviewRenewable and Sustainable Energy Reviews7918019110.1016/j.rser.2017.05.059Open DOISearch in Google Scholar

Launder B.E., Spalding D.B. (1974). The numerical computation of turbulent flows. Computer Methods. Computer Methods in Applied Mechanics and Engineering, 3, p. 269–289. doi: 10.1016/0045-7825(74)90029-2.LaunderB.E.SpaldingD.B.1974The numerical computation of turbulent flows. Computer MethodsComputer Methods in Applied Mechanics and Engineering326928910.1016/0045-7825(74)90029-2Open DOISearch in Google Scholar

Mahdavinejad M., Mohammadi S. (2018). Ecological analysis of natural ventilated facade system and its performance in Tehran’s climate. Ukrainian Journal of Ecology, 8(1), p. 273–281. doi: 10.15421/2018_212MahdavinejadM.MohammadiS.2018Ecological analysis of natural ventilated facade system and its performance in Tehran’s climateUkrainian Journal of Ecology8127328110.15421/2018_212Open DOISearch in Google Scholar

Naboni E. (2007). Ventilated opaque walls - A performance simulation method and assessment of simulated performance. Seminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Berkeley, May 28, California, USA.NaboniE.2007Ventilated opaque walls - A performance simulation method and assessment of simulated performanceSeminar Notes at Lawrence Berkeley National Laboratory Environmental Energy Technologies Division BerkeleyMay 28California, USASearch in Google Scholar

Sanjuan C., Suárez M. J., González M., Pistono J., Blanco E. (2011). Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façade. Solar Energy 85, p. 1851–1863. doi: 10.1016/j.solener.2011.04.028.SanjuanC.SuárezM. J.GonzálezM.PistonoJ.BlancoE.2011Energy performance of an open-joint ventilated facade compared with a conventional sealed cavity façadeSolar Energy851851186310.1016/j.solener.2011.04.028Open DOISearch in Google Scholar

Schabowicz K. (2018). Elewacje wentylowane Technologia Produkcji i metody badania płyt włóknisto-cementowych. Wrocław, Oficyna Wydawnicza Politechniki Wrocławskiej.SchabowiczK.2018Elewacje wentylowane Technologia Produkcji i metody badania płyt włóknisto-cementowychWrocławOficyna Wydawnicza Politechniki WrocławskiejSearch in Google Scholar

Suárez M. J., Sanjuan C., Gutiérrez A. J., Pistono J., Blanco E. (2012). Energy evaluation of an horizontal open joint ventilated façade. Applied Thermal Engineering 37. p. 302–313SuárezM. J.SanjuanC.GutiérrezA. J.PistonoJ.BlancoE.2012Energy evaluation of an horizontal open joint ventilated façadeApplied Thermal Engineering3730231310.1016/j.applthermaleng.2011.11.034Search in Google Scholar

Stazi F., Ulpiani G., Pergolini M., Magni D., Di Perna C. (2018). Experimental Comparison Between Three Types of Opaque Ventilated Facades. The Open Construction and Building Technology Journal 12, p. 296–308. doi: 10.2174/1874836801812010296.StaziF.UlpianiG.PergoliniM.MagniD.Di PernaC.2018Experimental Comparison Between Three Types of Opaque Ventilated FacadesThe Open Construction and Building Technology Journal1229630810.2174/1874836801812010296Open DOISearch in Google Scholar

eISSN:
2083-831X
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics