Open Access

Characterisation of nuclear microsatellite markers for Fraxinus excelsior L. and their transferability to six related species


Cite

Aggarwal RK, Allainguillaume J, Bajay MM, Barthwal S, Bertolino P, Chauhan P, Zucchi MI (2011) Permanent Genetic Resources added to Molecular Ecology Resources Database 1 August 2010 – 30 September 2010. Molecular Ecology Resources 11(1): 219-222. https://doi.org/10.1111/j.1755-0998.2010.02944.x21429127 Search in Google Scholar

Brachet S, Jubier MF, Richard M, Jung-Muller B, Frascaria-Lacoste N (1999) Rapid identification of microsatellite loci using 5’ anchored PCR in the common ash Fraxinus excelsior. Molecular Ecology 8(1):160-163. Search in Google Scholar

Broome A, Mitchell RJ (2017) Ecological impacts of ash dieback and mitigation methods. In: Technical Report. FCRN029. UK Forest Research: 1-16. Search in Google Scholar

Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20: 1004-1010. https://doi.org/10.2144/96206st018780871 Search in Google Scholar

Burger K, Müller M, Gailing O (2018) Characterization of EST-SSRs for European beech (Fagus sylvatica L.) and their transferability to Fagus orientalis Lipsky, Castanea dentata Bork., and Quercus rubra L. Silvae Genetica, 67(1): 127-132. https://doi.org/10.2478/sg-2018-0019 Search in Google Scholar

Dobrowolska D, Hein S, Oosterbaan A, Skovsgaard JP, Wagner SP (2008) Ecology and growth of European ash (Fraxinus excelsior L.). 35 p, Available under: http://www.valbro.uni-freiburg.de/ Search in Google Scholar

Ellis J, Burke J (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125-132. https://doi.org/10.1038/sj.hdy.680100117519965 Search in Google Scholar

Ferrazzini D, Monteleoni I, Belletti P (2007) Genetic variability and divergence among Italian populations of common ash (Fraxinus excelsior L.). Annals of Forest Science 64(2):159-168. https://doi.org/10.1051/forest:2006100 Search in Google Scholar

Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Resources 2(4):618-620. https://doi.org/10.1046/j.1471-8286.2002.00305.x Search in Google Scholar

Hebel I, Haas R, Dounavi A (2006) Genetic variation of common ash (Fraxinus excelsior L.) populations from provenance regions in southern Germany by using nuclear and chloroplast microsatellites. Silvae Genetica 55(1-6):38-44. https://doi.org/10.1515/sg-2006-0006 Search in Google Scholar

Heuertz M, Hausman JF, Hardy OJ, Vendramin GG, Frascaria-Lacoste N, Veke-mans X (2004) Nuclear microsatellites reveal contrasting patterns of genetic structure between western and south-eastern European populations of common ash (Fraxinus excelsior L.). Evolution 58(5):976-988. https://doi.org/10.1111/j.0014-3820.2004.tb00432.x15212379 Search in Google Scholar

Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309-344.https://doi.org/10.1007/s10681-010-0286-9 Search in Google Scholar

Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends in Plant Science 14(11):599-607. https://doi.org/10.1016/j.tplants.2009.08.00519748300 Search in Google Scholar

Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang GC, Hebard FV, Anagnostakis S, Wheeler N, Sisco PH, Abbott AG, Sederoff RR (2013) A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes 9: 557–571. https://doi.org/10.1007/s11295-012-0579-3 Search in Google Scholar

Lefort F, Brachet S, Frascaria-Lacoste N, Edwards KJ, Douglas GC (1999) Identification and characterisation of microsatellite loci in ash (Fraxinus excelsior L.) and their conservation in olive family (Oleaceae). Molecular Ecology8(6):1075-1092. https://doi.org/10.1046/j.1365-294X.1999.00655_8.x Search in Google Scholar

McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kijaer ED (2014) The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathology 63(3):485-499. https://doi.org/10.1111/ppa.12196 Search in Google Scholar

Mitchell RJ, Bailey S, Beaton JK, Bellamy PE, Brooker RW, Broome A, Chetcuti J, Eaton S, Ellis CJ, Farren J, Gimona A, Goldberg E, Hall J, Iason GR, Kerr G, Littlewood NA, Morgan V, Newey S, Potts JM, Pozsgai G, Ray D, Sim DA, Stock-an JA, Taylor AFS, Woodward S (2014) The potential ecological impact of ash dieback in the UK. JNCC Report No. 483. Peterborough: JNCC, 244 p, ISSN 0963-8091 Search in Google Scholar

Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback – A conservation biology challenge. Biological Conservation 158:37-49. https://doi.org/10.1016/j.biocon.2012.08.026 Search in Google Scholar

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x Search in Google Scholar

Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28(19):2537-2539. https://doi.org/10.1093/bioinformatics/bts460346324522820204 Search in Google Scholar

Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18(2):233-234. https://doi.org/10.1038/7270810657137 Search in Google Scholar

Sollars ESA, Harper AL, Kelly LJ, Sambles CM, Ramirez-Gonzalez RH, Swarbreck D et al. (2017) Genome sequence and genetic diversity of European ash trees. Nature 541:212-234. https://doi.org/10.1038/nature2078628024298 Search in Google Scholar

Stocks JJ, Metheringham CL, Plumb WJ, Lee SJ, Kelly LJ, Nichols RA, Buggs RJA (2019) Genomic basis of European ash tree resistance to ash dieback fungus. Nature Ecology & Evolution 3(12):1686-1696. https://doi.org/10.1038/s41559-019-1036-6688755031740845 Search in Google Scholar

Sutherland BG, Belaj A, Nier S, Cottrell JE, P Vaughan S, Hubert J, Russell K (2010) Molecular biodiversity and population structure in common ash (Fraxinus excelsior L.) in Britain: implications for conservation. Molecular Ecology 19(11):2196-2211. https://doi.org/10.1111/j.1365-294X.2009.04376.x20465580 Search in Google Scholar

van Oosterhout C, Hutchinson WF, Wills DPM, Shipley PF (2005) Micro-Checker User Guide. Hull: The University of Hull Search in Google Scholar

Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends in Biotechnology 23(1):48-55. https://doi.org/10.1016/j.tibtech.2004.11.00515629858 Search in Google Scholar

Wallander E (2013) Systematics and floral evolution in Fraxinus (Oleaceae). Belgische Dendrologie Belge 2012:38-58. Search in Google Scholar

Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358-1370. https://doi.org/10.1111/j.1558-5646.1984.tb05657.x28563791 Search in Google Scholar

Zheng HD, Zhuang WY (2014) Hymenoscyphus albidoides sp. nov. and H. pseudo-albidus from China. Mycological Progress 13:625-638. https://doi.org/10.1007/s11557-013-0945-z Search in Google Scholar

eISSN:
2509-8934
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science