1. bookVolume 70 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
access type Open Access

The traceability of Eucalyptus clones using molecular markers

Published Online: 26 Dec 2021
Page range: 217 - 225
Journal Details
License
Format
Journal
eISSN
2509-8934
First Published
22 Feb 2016
Publication timeframe
1 time per year
Languages
English
Abstract

The improvement of Eucalyptus clones plays a crucial role in modern silviculture. This study used a set of 17 microsatellite loci to analyze the genetic diversity and structure of 107 elite clones (80 E. grandis and 27 E. globulus). All clones were cultivated in Uruguay and were sourced from three different providers. Using the fingerprinting technique, an exclusive molecular profile was assigned for each clone, and the genotyping reaction showed differences between the two species. The cumulative probability of identifying two random individuals that share the same genotype (PI) with all 17 loci, was estimated as low for E. grandis (1.18×10-15) and E. globulus (4.03×10-14). The combined PIsibs was (1.05×10-5) and (2.17×10-5) for E. grandis and E. globulus, respectively. A total of 180 alleles were detected for E. grandis and 100 for E. globulus. We found a high mean number of alleles per locus (10 for E. grandis and 6 for E. globulus), and the results for mean polymorphic information content (PIC ) were (0.648) and (0.548), respectively. The observed heterozygosity (Ho) ranged from 0.216 to 0.838 (mean = 0.509) for E. grandis and 0 to 1 (mean = 0.566) for E. globulus. Two core sets of seven EST-SSR loci were identified for each species. These markers revealed unambiguous fragment amplification, providing a minimum number of SSRs for effective clonal identification. The genetic structure analysis suggests that the germplasm of the E. grandis population is structured in four clusters, while the E. globulus population consists of two clusters.

Keywords

Acuña CV, Villalba P, Hopp HE, Poltri SNM (2014) Transferability of microsatellite markers located in candidate genes for wood properties between eucalyptus species. Forest Systems 23(3):506–512. https://doi.org/10.5424/fs/2014233-0527910.5424/fs/2014233-05279 Search in Google Scholar

Arumugasundaram S, Ghosh M, Veerasamy S, Ramasamy Y (2011) Species discrimination, population structure and linkage disequilibrium in Eucalyptus camaldulensis and Eucalyptus tereticornis using SSR markers. PLoS ONE 6(12): e28252. https://doi.org/10.1371/journal.pone.002825210.1371/journal.pone.0028252323357222163287 Search in Google Scholar

Bautista R, Crespillo R, Cánovas FM, Claros MG (2003) Identification of olive-tree cultivars with SCAR markers. Euphytica 129:33–41. https://doi.org/10.1023/A:102152812204910.1023/A:1021528122049 Search in Google Scholar

Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32(3):314–331. https://doi.org/10.17348/era.9.0.151-16210.17348/era.9.0.151-162 Search in Google Scholar

Brancalion P, Amazonas N, Chazdon R, Melis J, Rodrigues R, Silva C, Sorrini T,Holl K (2020) Exotic eucalypts: From demonized trees to allies of tropical forest restoration? Journal of Applied Ecology 57(1):55–66. https://doi.org/10.1111/1365-2664.1351310.1111/1365-2664.13513 Search in Google Scholar

Campo Grande News (2014) https://www.campograndenews.com.br/economia/laudo-indica-que-eldorado-usou-muda-de-eucalipto-criada-pela-concorrente. Available at [cited 01/11/2021] Search in Google Scholar

Costa J, Vaillancourt RE, Steane DA, Jones RC, Marques C (2017) Microsatellite analysis of population structure in Eucalyptus globulus. Genome 60:770–777. https://doi.org/10.1139/gen-2016-021810.1139/gen-2016-021828679070 Search in Google Scholar

Dakin E, Avise J (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. https://doi.org/10.1038/sj.hdy.680054510.1038/sj.hdy.680054515292911 Search in Google Scholar

De-Lucas AI, Santana JC, Recio P, Hidalgo E (2008) SSR-based tool for identification and certification of commercial Populus clones in Spain. Annals of Forest Science 65(1):107–107. https://doi.org/10.1051/forest:200707910.1051/forest:2007079 Search in Google Scholar

Earl DA (2012) Structure harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-710.1007/s12686-011-9548-7 Search in Google Scholar

Ellis J, Burke J (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132. https://doi.org/10.1038/sj.hdy.680100110.1038/sj.hdy.680100117519965 Search in Google Scholar

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clustersof individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x10.1111/j.1365-294X.2005.02553.x15969739 Search in Google Scholar

Faria DA, Mamani ME, Pappas MR, Pappas GJ, Grattapaglia D (2010) A Selected Set of EST-derived microsatellites, polymorphic and transferable across 6 Species of Eucalyptus. Journal of Heredity 101(4):512–520. https://doi.org/10.1093/jhered/esq02410.1093/jhered/esq02420231265 Search in Google Scholar

Faria DA, Mamani EM, Pappas GJ, Grattapaglia D (2011) Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST micro-satellites and their use for individual fingerprinting and assignment tests. Tree Genetics and Genomes 7(1):63–77. https://doi.org/10.1007/s11295-010-0315-910.1007/s11295-010-0315-9 Search in Google Scholar

Ferreira ME, Grattapaglia D (1995) Introdução ao uso de marcadores moleculares em análise genética. EMBRAPA-CENARGEN, Brasília. Search in Google Scholar

Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist 179(4):911–929. https://doi.org/10.1111/j.1469-8137.2008.02503.x10.1111/j.1469-8137.2008.02503.x18537893 Search in Google Scholar

Grattapaglia D, Mamani EM, Silva-Junior OB, Faria DA (2015) A novel genome-wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Molecular Ecology Resources 15(2):437–448. https://doi.org/10.1111/1755-0998.1231710.1111/1755-0998.1231725146326 Search in Google Scholar

Gross BL, Wedger MJ, Martinez M, Volk GM, Hale C (2018) Identification of unknown apple (Malus × domestica) cultivars demonstrates the impact of local breeding program on cultivar diversity. Genet Resour Crop Evol (65):1317–1327. https://doi.org/10.1007/s10722-018-0625-610.1007/s10722-018-0625-6 Search in Google Scholar

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16(5):1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x10.1111/j.1365-294X.2007.03089.x17305863 Search in Google Scholar

Kirst M, Cordeiro CM, Rezende GD, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. Journal of Heredity 96(2):161–166. https://doi.org/10.1093/jhered/esi02310.1093/jhered/esi02315601907 Search in Google Scholar

Li F, Gan S, Zhang Z, Weng Q, Xiang D, Li M (2011) Microsatellite-based genotyping of the commercial Eucalyptus clones cultivated in China. Silvae Genetica 60(5):216–223. https://doi.org/10.1515/sg-2011-002910.1515/sg-2011-0029 Search in Google Scholar

Lu WHL, Qi J, Lan J, Luo JZ (2008) Genetic diversity of advance generation breeding on Eucayptus urophilla in Chine. Journal of Tropical Forest Science 30(3):320–329. https://doi.org/10.26525/jtfs2018.30.3.32032910.26525/jtfs2018.30.3.320329 Search in Google Scholar

Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4(3):347–354. https://doi.org/10.1111/j.1365-294X.1995.tb00227.x10.1111/j.1365-294X.1995.tb00227.x7663752 Search in Google Scholar

Pasqualone A, Montemurro C, di Rienzo V, Summo C, Paradiso VM, Caponio F (2016) Evolution and perspectives of cultivar identification and traceability from tree to oil and table olives by means of DNA markers. J Sci Food Agric 96(11):3642-3657. https://doi.org/10.1002/jsfa.771110.1002/jsfa.771126991131 Search in Google Scholar

Perrier X, Jacquemoud-Collet P (2006) DARwin software. http://darwin.cirad.fr/darwin. Search in Google Scholar

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–95910.1093/genetics/155.2.945146109610835412 Search in Google Scholar

Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ Search in Google Scholar

Rezende GD, Resende MDV, de Assis TF (2014) Eucalyptus breeding for clonal forestry. In: Fenning T (eds) Challenges and opportunities for the world‘s forests in the 21st century. Dordrecht Springer, pp 393–424, ISBN 978-94-007-7076-810.1007/978-94-007-7076-8_16 Search in Google Scholar

Rodrigues A, Faria J (2021) Profiling the variability of Eucalyptus essential oils with activity against the Phylum nematoda. Proceedings of the 1st International Electronic Conference on Biological Diversity, Ecology and Evolution, MDPI: Basel, Switzerland, https://doi.org/10.3390/BDEE2021-0942510.3390/BDEE2021-09425 Search in Google Scholar

Roman MG, Gangitano D, Figueroa A, Solano J, Anabalón L, Houston R (2020) Use of Eucalyptus DNA profiling in a case of illegal logging. Science and Justice 60(6):487–494. https://doi.org/10.1016/j.scijus.2020.09.00510.1016/j.scijus.2020.09.00533077031 Search in Google Scholar

Sumathi M, Bachpai VK, Mayavel A, Dasgupta MG, Nagarajan B, Rajasugunasekar D, Sivakumar V, Yasodha R (2018) Genetic linkage map and QTL identification for adventitious rooting traits in red gum eucalypts. 3 Biotech 8(5):242. https://doi.org/10.1007/s13205-018-1276-110.1007/s13205-018-1276-1593821929744274 Search in Google Scholar

Sumathi M, Yasodha R (2014) Microsatellite resources of eucalyptus: Current status and future perspectives. Botanical Studies 55(1):1–16. https://doi.org/10.1186/s40529-014-0073-310.1186/s40529-014-0073-3543031828510953 Search in Google Scholar

Tan LQ, Peng M, Xu LY, Wang LY, Chen SX, Zou Y, Qi GN, Cheng H (2015) Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genetics and Genomes 11(5):1–12. https://doi.org/10.1007/s11295-015-0914-610.1007/s11295-015-0914-6 Search in Google Scholar

Teixeira GC, Konzen ER, Faria JCT, Gonçalves DS, Carvalho D, Brondani GE (2020) Genetic diversity analysis of two Eucalyptus species using ISSR markers. Ciencia Florestal 30(1):270–278. https://doi.org/10.5902/198050983280410.5902/1980509832804 Search in Google Scholar

Telfer EJ, Stovold GT, Li Y, Silva-Junior OB, Grattapaglia GD, DungeyHS (2015) Parentage reconstruction in Eucalyptus nitens using SNPs and microsatellite markers: A comparative analysis of marker data power and robustness. PLOS ONE 10(7): e0130601. https://doi.org/10.1371/journal.pone.013060110.1371/journal.pone.0130601449762026158446 Search in Google Scholar

Torres-Dini D, Nunes ACP, Aguiar A, Nikichuk N, Centurión C, Cabrera M, Moraes MLT, Resende MDV, Sebbenn AM (2016) Clonal selection of Eucalyptus grandis x Eucalyptus globulus for productivity, adaptability, and stability, using SNP markers. Silvae Genetica 65(2):30–38. https://doi.org/10.1515/sg-2016-001410.1515/sg-2016-0014 Search in Google Scholar

Veloso MM, Simões-Costa MC, Carneiro LC, Guimarães JB, Mateus C, Fevereiro P, Pinto-Ricardo C (2018) Olive Tree (Olea europaea L.) Diversity in Traditional Small Farms of Ficalho, Portugal. Diversity 10(1):5. https://doi.org/10.3390/d1001000510.3390/d10010005 Search in Google Scholar

Wagner HW, Sefc KM (1999) Identity 1.0. University of Agricultural Sciences, Vienna. Search in Google Scholar

Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: Cautions and guidelines. Molecular Ecology 10(1):249–256. https://doi.org/10.1046/j.1365-294X.2001.01185.x10.1046/j.1365-294X.2001.01185.x11251803 Search in Google Scholar

Weir BS (1996) Genetic Data Analysis II. Massachusetts, USA: Sinauer Associates, 445 p, ISBN 0878939024 Search in Google Scholar

Wünsch A, Hormaza J (2002) Cultivar identification and genetic fingerprinting of temperate fruit tree species using DNA markers. Euphytica 125:59-67. https://doi.org/10.1023/A:101572380529310.1023/A:1015723805293 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo