1. bookVolume 69 (2020): Issue 1 (January 2020)
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year
Open Access

Genetic diversity of marginal populations of Populus euphratica Oliv. from highly fragmented river ecosystems

Published Online: 17 Dec 2020
Volume & Issue: Volume 69 (2020) - Issue 1 (January 2020)
Page range: 139 - 151
Journal Details
First Published
22 Feb 2016
Publication timeframe
1 time per year

Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biology 5:181-190. https://doi.org/10.1002/zoo.143005021210.1002/zoo.1430050212Search in Google Scholar

Arnaud-Haond S, Belkhir K (2007) GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7(1): 15–17. https://doi.org/10.1111/j.1471-8286.2006.01522.x10.1111/j.1471-8286.2006.01522.xSearch in Google Scholar

Atalay I (1996) Palaeosols as Indicators of the Climatic Changes during Quaternary Period in S Anatolia. Journal of Arid Environments 32: 23-35. https://doi.org/10.1006/jare.1996.000310.1006/jare.1996.0003Search in Google Scholar

Atalay I, Altunbaş S, Khan AA, Coşkun M (2018) The Mountain Ecology of the Taurus Mountains and Its Effects on Nomadism. TÜCAUM 30th International Geography Symposium, Ankara, pp 623-635Search in Google Scholar

Atalay I, Efe R, Soykan A (2008) Mediterranean Ecosystems of Turkey: Ecology of Taurus Mountains. In: Efe, Cravins, Öztürk, Atalay (eds) Environment and Culture in the Mediterranean Region Part I. Newcastle, UK, Cambridge Scholars Publishing, pp 3-37. https://doi.org/10.5848/csp.1087.0000110.5848/CSP.1087.00001Search in Google Scholar

Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22: 341-345. https://doi.org/10.1093/bioinformatics/bti80310.1093/bioinformatics/bti80316317072Search in Google Scholar

Beerli P, Felsenstein J (1999) Maximum-Likelihood Estimation of Migration Rates and Effective Population Numbers in Two Populations Using a Coalescent Approach. Genetics 152:2763-277310.1093/genetics/152.2.763146062710353916Search in Google Scholar

Beerli P, Palczewski M (2010) Unified Framework to Evaluate Panmixia and Migration Direction Among Multiple Sampling Locations. Genetics 185(1):313-326. https://doi.org/10.1534/genetics.109.11253210.1534/genetics.109.112532287096620176979Search in Google Scholar

Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162(4): 2025-203510.1093/genetics/162.4.2025146235612524368Search in Google Scholar

Brookfield JFY (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453–455. https://doi.org/10.1046/j.1365-294X.1996.00098.x10.1046/j.1365-294X.1996.00098.xSearch in Google Scholar

Browicz K (1977) Chorology of Populus euphratica Oliver. Arboretum Kornickie 22: 5-26Search in Google Scholar

Browicz Z, Yaltırık F (1982) Populus L. In: Davis P H (eds) Flora of Turkey and the East Aegean Islands Volume 7. Edinburgh, University Press, pp 716–720Search in Google Scholar

Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124, 255–279. https://doi.org/10.1086/28426710.1086/284267Search in Google Scholar

Bruelheide H, Manegold M, Jandt U (2004) The genetical structure of Populus euphratica and Alhagi sparsifolia stands in the Taklimakan desert. In: Runge M and X Zhang (eds) Ecophysiology and Habitat Requirements of Perennial Plant Species in the Taklimakan Desert. Germany: Shaker Verlag GmbH, pp 153-160Search in Google Scholar

Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol and Syst 15, 25–64. https://doi.org/10.1146/annurev.es.15.110184.00032510.1146/annurev.es.15.110184.000325Search in Google Scholar

Cao D, Li J, Huang Z, Baskin CC, Baskin JM et al. (2012) Reproductive Characteristics of a Populus euphratica Population and Prospects for Its Restoration in China. PLOS ONE 7(7): e39121. https://doi.org/10.1371/journal.pone.003912110.1371/journal.pone.0039121340606122848351Search in Google Scholar

Ciftci A, Karatay H, Küçükosmanoğlu F, Karahan A, Kaya Z (2017) Genetic differentiation between clone collections and natural populations of European black poplar (Populus nigra L.) in Turkey. Tree Genet Genom 13:69. https://doi.org/10.1007/s11295-017-1154-810.1007/s11295-017-1154-8Search in Google Scholar

Cornuet J-M, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin J-M, Estoup A (2014) DIYABC v2. 0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30(8):1187–1189. https://doi.org/10.1093/bioinformatics/btt76310.1093/bioinformatics/btt76324389659Search in Google Scholar

Cortan D, Schroeder H, Sijacic-Nikolic M, Wehenkel C, Fladung M (2016) Genetic structure of remnant black poplar (Populus nigra L.) populations along biggest rivers in Serbia assessed by SSR markers. Silvae Genetica 65(1):12-19. https://doi.org/10.1515/sg-2016-000210.1515/sg-2016-0002Search in Google Scholar

Dabrowski MJ, Pilot M, Kruczyk M, Zmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: Inconsistencies between and within different methods. Mol Ecol Resour 14(2): 361-373. https://doi.org/10.1111/1755-0998.1217710.1111/1755-0998.1217724119056Search in Google Scholar

Degirmenci OF, Kaya Z (2019) Consequences of habitat fragmentation on genetic diversity and structure of Salix alba L. populations in two major river systems of Turkey. Tree Genet Genomes 15:59. https://doi.org/10.1007/s11295-019-1365-210.1007/s11295-019-1365-2Search in Google Scholar

Dixon AL, Herlihy CR, Busch JW (2013) Demographic and population-genetic tests provide mixed support for the abundant centre hypothesis in the endemic plant Leavenworthia stylosa. Mol Ecol 22: 1777–1791. https://doi.org/10.1111/mec.1220710.1111/mec.1220723356549Search in Google Scholar

Doyle J (1991) DNA Protocols for Plants. In: Hewitt GM, AWB Johnston and JPW Young (eds) Molecular Techniques in Taxonomy, NATO ASI Series (Series H: Cell Biology), vol 57. Berlin, Heidelberg: Springer, pp 283-293. https://doi.org/10.1007/978-3-642-83962-7_1810.1007/978-3-642-83962-7_18Search in Google Scholar

Du Q, Wang B, Wei Z, Zhang D, Li B (2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. J Hered 103:853-862. https://doi.org/10.1093/jhered/ess06110.1093/jhered/ess06123008443Search in Google Scholar

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2): 359-361. https://doi.org/10.1007/s12686-011-9548-710.1007/s12686-011-9548-7Search in Google Scholar

Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17: 1170–1188. https://doi.org/10.1111/j.1365-294X.2007.03659.x10.1111/j.1365-294X.2007.03659.x18302683Search in Google Scholar

Eusemann P (2010) Population genetics and reproduction biology of Populus euphratica OLIV. (Salicaceae) at the Tarim River, Xinjiang Province, NW China. Dissertation, University of GreifswaldSearch in Google Scholar

Eusemann P, Fehrenz S, Schnittler M (2009) Development of two microsatellite multiplex PCR systems for high throughput genotyping in Populus euphratica. J Forestry Res 20(3): 195–198. https://doi.org/10.1007/s11676-009-0038-710.1007/s11676-009-0038-7Search in Google Scholar

Eusemann P, Petzold A, Thevs N, Schnittler M (2013) Growth patterns and genetic structure of Populus euphratica Oliv. (Salicaceae) forests in NW China-Implications for conservation and management. Forest Ecol Manag 297: 27-36. https://doi.org/10.1016/j.foreco.2013.02.00910.1016/j.foreco.2013.02.009Search in Google Scholar

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol Ecol 14(8): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x10.1111/j.1365-294X.2005.02553.x15969739Search in Google Scholar

Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x10.1111/j.1755-0998.2010.02847.x21565059Search in Google Scholar

Fay MF, Lledo MD, Kornblum MM, Crespo MB (1999) From the waters of Babylon? Populus euphratica in Spain is clonal and probably introduced. Biodiversity and Conservation 8: 769-778. https://doi.org/10.1023/A:100884223038310.1023/A:1008842230383Search in Google Scholar

Francis RM (2016) pophelper: An r package and web app to analyse and visualize population structure. Mol Ecol Resour 17(1): 27–32. https://doi.org/10.1111/1755-0998.1250910.1111/1755-0998.1250926850166Search in Google Scholar

Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10(2): 305–318. https://doi.org/10.1046/j.1365-294x.2001.01190.x10.1046/j.1365-294x.2001.01190.x11298947Search in Google Scholar

Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-Statistics. The Journal of Heredity 86(6): 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a11162710.1093/oxfordjournals.jhered.a111627Search in Google Scholar

Gries D, Foetzki A, Arndt SK, Bruelheide H, Thomas FM, Zhang X, Runge M (2005) Production of perennial vegetation in an oasis-desert transition zone in NW China-allometric estimation and assessment of flooding and use effects. Plant Ecol 181:23-43. https://doi.org/10.1007/s11258-004-7808-210.1007/s11258-004-7808-2Search in Google Scholar

Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48: 361-372. https://doi.org/10.2307/253229610.2307/2532296Search in Google Scholar

Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801-1806. https://doi.org/10.1093/bioinformatics/btm23310.1093/bioinformatics/btm23317485429Search in Google Scholar

Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24: 1403-1405. https://doi.org/10.1093/bioinformatics/btn12910.1093/bioinformatics/btn12918397895Search in Google Scholar

Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet 11:94. https://doi.org/10.1186/1471-2156-11-9410.1186/1471-2156-11-94297385120950446Search in Google Scholar

Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x10.1111/j.1365-294X.2007.03089.x17305863Search in Google Scholar

Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conservation Biology, 9, 753–760. https://doi.org/10.1046/j.1523-1739.1995.09040753.x10.1046/j.1523-1739.1995.09040753.xSearch in Google Scholar

Lexer C, Fay MF, Joseph A, Nica MS, Heinze B (2005) Barrier to gene fow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen) the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057. https://doi.org/10.1111/j.1365-294X.2005.02469.x10.1111/j.1365-294X.2005.02469.x15773935Search in Google Scholar

Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conservation Biology 12: 228-237. https://doi.org/10.1111/j.1523-1739.1998.96388.x10.1111/j.1523-1739.1998.96388.xSearch in Google Scholar

Mamıkoğlu NG (2007) Türkiye’nin ağaçları ve çalıları. İstanbul: NTV Press, 728 p, ISBN 9786052981467 (In Turkish)Search in Google Scholar

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp 1-8. https://doi.org/10.1109/gce.2010.567612910.1109/GCE.2010.5676129Search in Google Scholar

Namroud MC, Park A, Tremblay F, Bergeron Y (2005) Clonal and spatial genetic structures of aspen (Populus tremuloides Michx). Mol Ecol 14:2969-2980. https://doi.org/10.1111/j.1365-294X.2005.02653.x10.1111/j.1365-294X.2005.02653.x16101767Search in Google Scholar

Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts46010.1093/bioinformatics/bts460346324522820204Search in Google Scholar

Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844-855. https://doi.org/10.1046/j.1523-1739.1998.96489.x10.1046/j.1523-1739.1998.96489.xSearch in Google Scholar

Petzold A, Pfeiffer J, Jansen F, Eusemann P, Schnittler M (2013) Sex ratios and clonal growth in dioecious Populus euphratica Oliv., Xinjiang Prov., Western China. Trees 27: 729-744. https://doi.org/10.1007/s00468-012-0828-y10.1007/s00468-012-0828-ySearch in Google Scholar

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x10.1111/j.1471-8286.2007.01758.x197477918784791Search in Google Scholar

Raymond M, Rousset F (1995) Genepop (Version-1.2) - Population-Genetics Software for Exact Tests and Ecumenicism. J Hered 86: 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a11157310.1093/oxfordjournals.jhered.a111573Search in Google Scholar

Rottenberg A, Nevo E, Zohary D (2000) Genetic variability in sexually dimorphic and monomorphic populations of Populus euphratica (Salicaceae). Can J Forest Res 30: 482-486. https://doi.org/10.1139/x99-23010.1139/x99-230Search in Google Scholar

Rousset F (2008) GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8(1):103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x10.1111/j.1471-8286.2007.01931.x21585727Search in Google Scholar

Saito Y, Shiraishi S, Tanimoto T, Yin L, Watanabe S, Ide Y (2002) Genetic diversity of Populus euphratica populations in northwestern China determined by RAPD DNA analysis. New Forests 23(2): 97-103. https://doi.org/10.1023/A:101560592841410.1023/A:1015605928414Search in Google Scholar

Sitzia T, Barcaccia G, Lucchin M (2018) Genetic diversity and stand structure of neigh- boring white willow (Salix alba L.) populations along fragmented riparian corridors: a case study. Silvae Genetica 67: 79-88. https://doi.org/10.2478/sg-2018-001110.2478/sg-2018-0011Search in Google Scholar

Smulders MJM, van Der Schoot J, Arens P, Vosman B (2001) Trinucleotide repeat microsatellite markers for black poplar (Populus nigra L.). Molec Ecol Notes 1(3): 188-90. https://doi.org/10.1046/j.1471-8278.2001.00071.x10.1046/j.1471-8278.2001.00071.xSearch in Google Scholar

The Forest Tree Genetic Resources Panel of the Food and Agriculture Organization of the United Nations and the Canadian Forest Service (1995) Report of the International Boreal Forest Genetic Resources Workshop 3–21 [online] Available at <http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/10268_e.pdf.> [cited 6/ 20/2019]Search in Google Scholar

The International Populus Genome Consortium (2017) Poplar SSR list [online] Available at: <http://www.ornl.gov/sci/ipgc/ssr_resource.htm> [cited 12/25/2017]Search in Google Scholar

Thevs N, Zerbe S, Schnittler M, Abdusalih N, Succow M (2008) Structure, reproduction, and flood-induced dynamics of riparian Tugai forests at the Tarim River in Xinjiang, NW China. Forestry 81:45-57. https://doi.org/10.1093/forestry/cpm04310.1093/forestry/cpm043Search in Google Scholar

Toplu F (1994) Türkiye’de Kavak Gen Kaynaklarının Korunması Danışman Raporu GCP/INT/539/ITA. Forestry and Food Security in Mediterranean and Near East Regions (In Turkish)Search in Google Scholar

Toplu F (1999) Fırat Kavağı (Populus euphratica Olivier), GDA Orm. Arş. Enst Müd., Çeşitli Yay. Serisi No:1. Elazığ, Çağ Ofset Press, pp 59 (In Turkish)Search in Google Scholar

Vakkari P, Rusanen M, Kärkkäinen K (2009) High genetic differentiation in marginal populations of European white elm (Ulmus laevis). Silva Fenn 43: 185–196. https://doi.org/10.14214/sf.20510.14214/sf.205Search in Google Scholar

van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x10.1111/j.1471-8286.2004.00684.xSearch in Google Scholar

Velioğlu E, Akgül S (2016) Poplars and Willows in Turkey: Country Progress Report of the National Poplar Commision Poplar and Fast Growing Forest Trees Research Institute (2012-2015). KOCAELİSearch in Google Scholar

Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10(1):249-56 https://doi.org/10:249–256. 10.1046/j.1365-294x.2001.01185.x10.1046/j.1365-294X.2001.01185.xSearch in Google Scholar

Wang S, Chen B, Li H (1996) Euphrates poplar forest, 1st edn. Beijing: China Environmental Science Press.Search in Google Scholar

Wang C, Liu LX, Liu YG (2015) Development and characterization of 20 polymorphic microsatellite markers from RAPD product in Populus euphratica. Conserv Genet Resour 7(3): 669-671. https://doi.org/10.1007/s12686-015-0473-z10.1007/s12686-015-0473-zSearch in Google Scholar

Wang J, Li Z, Guo Q, Ren G, Wu Y (2011a) Genetic variation within and between populations of a desert poplar (Populus euphratica) revealed by SSR markers. Ann For Sci 68: 1143-1149. https://doi.org/10.1007/s13595-011-0119-610.1007/s13595-011-0119-6Search in Google Scholar

Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M (2011b) Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS ONE 6(10): 1-10. https://doi.org/10.1371/journal.pone.002653010.1371/journal.pone.0026530319752122028897Search in Google Scholar

Westermann J, Zerbe S, Eckstein D (2008) Age structure and growth of degraded Populus euphratica floodplain forests in north-west China and perspectives for their recovery. J Integr Plant Biol 50:536-546. https://doi.org/10.1111/j.1744-7909.2007.00626.x10.1111/j.1744-7909.2007.00626.x18713421Search in Google Scholar

Wiehle M, Eusemann P, Thevs N, Schnittleret M (2009) Root suckering patterns in Populus euphratica (Euphrates poplar, Salicaceae). Trees 23: 991-1001. https://doi.org/10.1007/s00468-009-0341-010.1007/s00468-009-0341-0Search in Google Scholar

Wiehle M, Vornam B, Wesche K, Goenster S, Buerkert A (2016) Population structure and genetic diversity of Populus laurifolia in fragmented riparian gallery forests of the Mongolian Altai Mountains. Flora 224:112-122. https://doi.org/10.1016/j.flora.2016.07.00410.1016/j.flora.2016.07.004Search in Google Scholar

Wu Y, Wang J, Liu J (2008) Development and characterization of microsatellite markers in Populus euphratica (Populaceae). Mol Ecol Resour 8(5): 1142-1144. https://doi.org/10.1111/j.1755-0998.2008.02202.x10.1111/j.1755-0998.2008.02202.x21585996Search in Google Scholar

Xu H, Yea M, Li J (2009) The ecological characteristics of the riparian vegetation affected by river overflowing disturbance in the lower Tarim River. Environ Geol 58:1749-1755. https://doi.org/10.1007/S00254-008-1674-510.1007/s00254-008-1674-5Search in Google Scholar

Xu F, Feng S, Wu R, Du FK (2013) Two highly validated SSR multiplexes (8-plex) for Euphrates’ poplar, Populus euphratica (Salicaceae). Mol Ecol Resour 13: 144-153. https://doi.org/10.1111/1755-0998.1203010.1111/1755-0998.1203023134475Search in Google Scholar

Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ (2018) Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evol Biol 18:75. https://doi.org/10.1186/s12862-018-1194-110.1186/s12862-018-1194-1597048329801429Search in Google Scholar

Recommended articles from Trend MD